The production of aluminum nanoparticles and the determination of the size of these nanoparticles by safe and low-cost radiography through the design and construction of electrical explosion of wire and X-ray radiography equipment are among the objectives of this research. Using a wire explosion device, currents of 20, 115, and 250A were applied to the aluminum wire, and based on the results obtained, nanoparticles with dimensions of 20 to 100 nanometers were obtained. The current and electric arc force used affect the amount of aluminum nanoparticles dispersed in the solution, the clarity and width of the laser light path, and the color of the solution. For the minimum amount of current and force, the concentration of nanoparticles in the solution is lower and its color is clearer, and the width of the laser light has its lowest value. Also, for the maximum amount of current and force, the amount and concentration of nanoparticles dispersed in the solution increases and the solution has a darker color. In this case, the laser light path is clearer and its width is also the highest. The designed radiography device is equipped with an X-ray tube housing to eliminate lead contamination in the X-ray room and increase safety. Through nano-radiography, using X-ray radiation to the produced nanoparticles and considering the waves emitted from the nanoparticles and the colors observed in the radiography, the dimensions of the aluminum nanoparticles were determined and compared with the results obtained for copper nanoparticles.
F. J. Heiligtag, M. Niederberger. The fascinating world of nanoparticle research. Mat. Today 16 )7-8) (2013) 262-271.
J. R. Hochella, F. Michael. Nanominerals, mineral nanoparticles, and earth systems. Science 319 (5870) (2008) 1631-1635.
X. Luo, A. Morrin, A. J. Killard, M. R. Smyth. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18 (2006) 319-326.
Y.-S. Kwon, A. A. Gromov, A. P. Ilyin. Reactivity of superfine aluminum powders stabilized by aluminum diboride. Combust. Flame. 131 (3) (2002) 349-352.
M. Keams. Development and applications of ultrafine aluminum powders. Mater. Sci. Eng. A. 375-377 (2004) 120-126.
A. V. Rane, K. Kanny, V. K. Abitha, S. Thomas. Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synthesis Inorganic Nanomat. (2018) 121-139.
L. Liu, J. Zhao, W. Yan, Q. Zhang. Influence of energy deposition on characteristics of nanopowders synthesized by electrical explosion of Aluminum wire in the Argon gas. IEEE Trans. Nanotech. 13 (4) (2014) 842-849.
M. I. Lerner, E. A. Glazkova, A. S. Lozhkomoev, N. V. Svarovskay, O. V. Bakina, A. V. Pervikov, S. G. Psakhie. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol. 295 (2016) 307-314.
Y. A. Kotov. Electric explosion of wires as a method for preparation of nanopowders. J. Nanoparticle Res. 5 (2003) 539-550.
V. A. Burtsev, A. B. Andrezen, A. A. Drozdov, N. V. Kalinin. Electrical Explosion of Conductors as a Source of High Electrical Field Strength Pulses. AIP Conf. Proc. 650 (2002) 53-56.
Y. S. Lee, B. Bora, S. L. Yap, C. S. Wong. Effect of ambient air pressure on synthesis of copper and copper oxide nanoparticles by wire explosion process. Curr. Appl. Phys. 12 (2012) 199-203.
E. C. Cnare, F. W. Neilson. Large Exploding Wires-Correlation to Small Wires and Pause Time Versus Length Dependency. Sandia Corp., Albuquerque, N. Mex, 1959.
O. Antonov, S. Efimov, D. Yanuka, M. Kozlov, V. Gurovich, Y. Krasik. Generation of converging strong shock wave formed by microsecond timescale underwater electrical explosion of spherical wire array. Appl. Phys. Lett. 102 (2013) 124104.
V. I. Oreshkin, R. Baksht. Wire explosion in vacuum. IEEE Trans. Plasma Sci. 48 (5) (2020) 1214-1248.
P. Sen, J. Ghosh, A. Abdullah, P. Kumar, Vandana. Preparation of Cu, Ag, Fe and Al nanoparticles by the exploding wire technique. J. Chem. Sci. 115 (2003) 499-508.
R. F. Phalen. Evaluation of an exploded-wire aerosol generator for use in inhalation studies. J. Aerosol Sci. 3 (1972) 395-400.
B. Mohtashami, F. Tourchian. Christensen's Physics of Diagnostic Radiology. Noor Danesh, Iran, 2004.
F. Tourchian. Specialized Techniques: Radiology, CT Scan, MRI, and Nuclear Medicine. Noor Danesh, Iran, 2004.
S. Alice, G. W. Kneale. Radiation dose effects in relation to obstetric x-rays and childhood cancers. The Lancet. 295 (7658) (1970) 1185-1188.
J. Chen, S. Loeb, J. H. Kim. LED revolution: fundamentals and prospects for UV disinfection applications. Environ. Sci.: Water Res. Technol. 3 (2017) 188-202.
M. Ahmadi, S. Ebrahimpour, M. T. Ahmadi, H. Goudarzi. Design and fabrication of X-ray accelerator housing to increase the safety and ignore the lead room. J. Radiat. Safety Measurement 11 (5) (2022) 205-208.
M. Ahmadi, S. Ebrahimpour, M.T. Ahmadi, H. Goudarzi. Design and fabrication of X- ray radiography system. J. Radiat. Safety Measurement 11 (5) (2022) 201-204.
W. B. Russel. Brownian motion of small particles suspended in liquids. Annu. Rev. Fluid Mech. 13 (1981) 425-455.
S. T. Ryoo, J. K. Chang. Representation of Dispersion Effect Using N-Way Color Based White Light. In: Park, J., Leung, V., Wang, CL., Shon, T. (eds) Future Information Technology, Application, and Service. Lecture Notes in Electrical Engineering, vol 179. Springer, Dordrecht. (2012) 165-175.
Y. Shafiei Dizji, M. T. Ahmadi, H. Goodarzi, M. Rahmani. Radiographic study of copper nanoparticles and their production by electric wire explosion. 3rd Intl. Conf. Res. Tech. Nanoscience (2023).
N. A. Dhas, C. P. Raj, A. Gedanken. Synthesis, characterization, and properties of metallic copper nanoparticles. Chem. Mater. 10 (1998) 1446-1452.
P. K. Khanna, S. Gaikwad, P. V. Adhyapak, N. Singh, R. Marimuthu. Synthesis and characterization of copper nanoparticles. Mater. Lett. 61 (2007) 4711-4714.
D. Mott, J. Galkowski, L. Wang, J. Luo, C. Zhong. Synthesis of size-controlled and shaped copper nanoparticles. Langmuir. 23 (2007) 5740-5745.
A. Umer, S. Naveed, N. Ramzan, M. S. Rafique, M. Imran. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria. 19 (2014) 197-203.
J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, A. A. Rahuman. Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 71 (2012) 114-116.
Y. Wei, S. Chen, B. Kowalczyk, S. Huda, T. P. Gray, B. A. Grzybowski. Synthesis of stable, low-dispersity copper nanoparticles and nanorods and their antifungal and catalytic properties. J. Phys. Chem. C. 114 (2010) 15612-15616.
Z. Ibupoto, K. Khun, V. Beni, X. Liu, M. Willander. Synthesis of novel CuO nanosheets and their non-enzymatic glucose sensing applications. Sensors 13 (2013) 7926-7938.
J. M. Zen, C. T. Hsu, A. S. Kumar, H. J. Lyuu, K. Y. Lin. Amino acid analysis using disposable copper nanoparticle plated electrodes. Analyst. 129 (2004) 841-845.
Ebrahimpour, S. , Ahmadi, M. T. , Goudarzi, H. and Rahmani, M. (2025). Production and radiography of aluminum nanoparticles using electrical explosion of wire device and a designed X-ray radiography system. Journal of Radiation Safety and Measurement, 13(4), 235-247. doi: 10.22052/rsm.2025.256249.1089
MLA
Ebrahimpour, S. , , Ahmadi, M. T. , , Goudarzi, H. , and Rahmani, M. . "Production and radiography of aluminum nanoparticles using electrical explosion of wire device and a designed X-ray radiography system", Journal of Radiation Safety and Measurement, 13, 4, 2025, 235-247. doi: 10.22052/rsm.2025.256249.1089
HARVARD
Ebrahimpour, S., Ahmadi, M. T., Goudarzi, H., Rahmani, M. (2025). 'Production and radiography of aluminum nanoparticles using electrical explosion of wire device and a designed X-ray radiography system', Journal of Radiation Safety and Measurement, 13(4), pp. 235-247. doi: 10.22052/rsm.2025.256249.1089
CHICAGO
S. Ebrahimpour , M. T. Ahmadi , H. Goudarzi and M. Rahmani, "Production and radiography of aluminum nanoparticles using electrical explosion of wire device and a designed X-ray radiography system," Journal of Radiation Safety and Measurement, 13 4 (2025): 235-247, doi: 10.22052/rsm.2025.256249.1089
VANCOUVER
Ebrahimpour, S., Ahmadi, M. T., Goudarzi, H., Rahmani, M. Production and radiography of aluminum nanoparticles using electrical explosion of wire device and a designed X-ray radiography system. Journal of Radiation Safety and Measurement, 2025; 13(4): 235-247. doi: 10.22052/rsm.2025.256249.1089