Evaluation of a microdosimeter designed for measurement of neutrons dose-equivalent in mixed neutron-gamma fields

Author

10.22052/6.1.7

Abstract

In the present work a microdosimeter designed for measurement of neutrons dose-equivalent, is evaluated in the mixed neutron-gamma fields of 241Am-Be and 252Cf sources. The microdosimeter is considered as an array of 259 similar sensitive volumes to increase the sensitivity to neutrons. Each sensitive volume is a cylinder of 5 mm in diameter and height filled with the tissue-equivalent gas at 0.11 atm pressure to simulate 1 µm of tissue. Dose-equivalent values of neutrons are determined using the microdosimetric distributions calculated by Geant4 simulation toolkit and also considering the separation limit of 3.5 keV/µm between the neutron and gamma contributions in these distributions. Obtained results reveal that the dose-equivalent values of above sources deviate by 9% and 17% from H*(10) values, respectively. Paying attention to the no need for dose calibration of microdosimeters separately in different fields and their trustworthy responses in unknown fields, it can be concluded that the designed microdosimeter can be used in every mixed neutron-gamma field with the maximum energy of 11 MeV in order to measure the dose-equivalent of neutrons.

Keywords


[1] ICRU. Neutron Dosimetry for Biology and Medicine. ICRU Report 26. Bethesda-Maryland, USA, (1977). [2] H.H. Rossi, M. Zaider. Microdosimetry and its applications. Springer, (1996). [3] H.H. Rossi, W. Rosenzweig. A device for the measurement of dose as a function f specific ionization. Radiology. 64 (1955) 404–411. [4] J. Booz. Development of dose equivalent meters based on microdosimetric principles. Radiat. Environ. Biophys. 23 (1984) 155–170. [5] U.J. Schrewe, H.J. Brede, G. Dietze. Dosimetry in mixed neutron-photon fields with tissue-equivalent proportional counters. Radiat. Prot. Dosim. 29 (1989) 41–45. [6] U.J. Schrewe, H. Schuhmacher, H.J. Brede, G. Dietze. Determination of photon and neutron dose fractions with tissue-equivalent proportional counters. Radiat. Prot. Dosim. 31 (1990) 143–147. [7] M. Farahmand, A. Bos, L. De Nardo, C. Van Eijk. First microdosimetric measurement with a TEPC based on a GEM. Radiat. Prot. Dosim. 110 (2004) 839–843. [8] C. Wang, M. Seidaliev, A. Mandapaka. Design and simulation of a GEM—based TEPC as a neutron REM meter. Radiat. Prot. Dosim. 126 (2007) 559–563. [9] G. Orchard, K. Chin, W. Prestwich, A. Waker, S. Byun. Development of a thick gas electron multiplier for microdosimetry. Nucl. Instrum. Meth. A. 638 (2011) 122–126. [11] H. Schuhmacher. Tissue-equivalent proportional counters in radiation protection dosimetry: expectations and present state. Radiat. Prot. Dosim. 44 (1992) 199–206. [12] A. Moslehi, G. Raisali. A multi-element thick gas electron multiplier-based microdosemeter for measurement of neutron dose-equivalent: a Monte Carlo study. Radiat. Prot. Dosim. 176 (2017) 404–410. [13] F. Sauli. GEM: a new concept for electron amplification in gas detectors. Nucl. Instrum. Meth. A. 386 (1997) 531–534. [14] R. Chechik, A. Breskin, C. Shalem, D. Mormann. Thick GEM-like hole multipliers: Properties and possible applications. Nucl. Instrum. Meth. A. 44 (2004) 303–308. [15] G. Leuthold, V. Mares, H. Schraube. Calculation of neutron ambient dose equivalent on the basis of the ICRP revised quality factors. Radiat. Prot. Dosim. 40 (1992) 77–84. [16] S. Agostinelli, J. Allison, K.A. Amako, J. Apostolakis. Geant4-a simulation toolkit. Nucl. Instrum. Meth. A. 506 (2003) 250–303. [17] U. Fano. Note on Bragg-Gray cavity principle for measuring energy dissipation. Radiat. Res. 1 (1954) 237–240. [18] A. Moslehi, G. Raisali, M. Lemahi. Simulation and experimental study of an indigenously designed and constructed THGEM-based microdosimeter for dose-equivalent measurement. Radiat. Meas. 86 (2016) 56–62. [19] International Standard. Reference neutron radiations. ISO 8529-1. Switzerland, (2001). [20] H.R. Vega-Carrillo, E. Manzaranes-Acuna, A. M. Becerra-Ferreiro, A. Carrillo-Nunez. Neutron and gamma ray spectra of 239PuBe and 241AmBe. Appl. Radiat. Isot. 57 (2002) 167–170. [21] R. Billnert, F.J. Hambcsh, A. Oberstedt, S. Oberstedt. New prompt spectral γ-ray data from the reaction 252Cf(sf) and its implication on present evaluated nuclear data files. Phys. Rev. C. 87 (2013) 024601. [22] A.M. Kellerer, K. Hahn. Considerations on a revision of the quality factor. Radiat. Res. 114 (1988) 480–488. [23] ICRU. Quality factor in radiation protection. ICRU Report 40. Bethesda-Maryland, USA, (1986). [24] V.D. Nguyen. A dose equivalent meter based on the tissue-equivalent proportional counter, and problems encountered in its use. Radiat. Prot. dosim. 9 (1984) 223–225. [25] J. Booz. Development of dose equivalent meters based on microdosimetric principles. Radiat. Environ. Biophys. 23 (1984) 155–170.