Investigating the effect of changes in the dimensions of high dose rate brachytherapy sources on dosimetry quantities using GEANT4

Document Type : Original Article

Authors

1 Department of Physics, Payame Noor Universiy, Po Box 19395-3697 Tehran, Iran

2 Department of Physics, Hakim Sabzevari University, Sabzevar, Iran

Abstract

In this study, the BEBIG standard source was simulated in the GEANT4 Monte Carlo tools and the two-dimensional dose distribution was calculated. Then, the geometry factor was calculated for the linear source and the cylindrical source. In the standard BEBIG source, a dimensional change was created without changing the volume with constant activity, and with the new design, the geometry factor was calculated for the linear source and the cylindrical source. For both sources, given the source dose rate and cylindrical geometry function, the anisotropy function and radial dose function were calculated. The dose rate for both the standard BEBIG and the scaled-up BEBIG sources is very high near them and this value decreases as the distance from the sources increases. The geometry factor in the Monte Carlo calculation method for the BEBIG source is necessary when the given dimensions are changed, but it is approximated for the standard BEBIG source. At close distances from the source, the anisotropy is greatly reduced; therefore, the dose distribution to the target tumors is more uniform.

Keywords


  1. 1. Elboukhari, S. Elboukhari, K. Yamni, H. Ouabi, T. Bouassa, L. Ait Mlouk. Comparative dosimetric study between 60 Co and 192 Ir BEBIG high dose rate sources, Used in Brachytherapy, using Monte Carlo N-particle extended. Dosimetry. IntechOpen. (2022).
  2. D. Granero, J. Pérez‐Calatayud, F. Ballester. Dosimetric study of a new Co‐60 source used in brachytherapy. Med. Phys. 34. (9) (2007) 3485-3488.
  3. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartallo, P. Nieminen, T. Nishimura, K. Ohtsubo, M. Okamura, S. O'Neale, Y. Oohata, K. Paech, J. Perl, A. Pfeiffer, M.G. Pia, F. Ranjard, A. Rybin, S. Sadilov, E. Di Salvo, G. Santin, T. Sasaki, N. Savvas, Y. Sawada, S. Scherer, S. Sei, V. Sirotenko, D. Smith, N. Starkov, H. Stoecker, J. Sulkimo, M. Takahata, S. Tanaka, E. Tcherniaev, E. Safai Tehrani, M. Tropeano, P. Truscott, H. Uno, L. Urban, P. Urban, M. Verderi, A. Walkden, W. Wander, H. Weber, J.P. Wellisch, T. Wenaus, D.C. Williams, D. Wright, T. Yamada, H. Yoshida, D. Zschiesche. Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators 506 (3) (2003) 250-303.
  4. M. J. Rivard, B. M. Coursey, L. A. DeWerd, W. F. Hanson, M. S. Huq, G. S. Ibbott, M. G. Mitch, R. Nath, J. F. Williamson. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med. Phys. 31 (3) (2004) 633-674.
  5. M. Joya, H. A. Nedaie, G.e Geraily, M. Ghorbani, P. Sheikhzadeh, M. Naraqi Arani. BEBIG 60Co HDR brachytherapy source dosimetric parameters validation using GATE Geant4-based simulation code. Heliyon 8 (3) (2022) e09168.
  6. S. Saghamanesh, A. Karimian, M. Abdi. Absorbed dose assessment of cardiac and other tissues around the cardiovascular system in brachytherapy with 90Sr/90Y source by Monte Carlo simulation. Radiat. Prot. Dosimetry 147 (1-2) (2011) 296-299.
  7. S. Bhola, T. P. Selvam, S. Sridhar, R. S. Vishwakarma. An analytic approach to the dosimetry of a new BEBIG 60Co high-dose-rate brachytherapy source. J. Med. Phys. 37 (3) (2012) 129-137.
  8. T. P. Selvam, S. Bhola. EGSnrc‐based dosimetric study of the BEBIG HDR brachytherapy sources. Med. Phys. 37 (3) (2010) 1365-1370.
  9. M. Marvi, M. Salehi Barough, S. Gholami. Measurement of entrance skin dose (ESD) by TLD dosimeters and its comparison with treatment design systems in GYN brachytherapy. J. Radiat. Safety Measurement 10 (2) (2021) 37-44.
  10. D. Baltas, L. Sakelliou, N. Zamboglou. The Physics of Modern Brachytherapy for Oncology. CRC Press, New York, 2006.
  11. R. P. King, R. S. Anderson, M. D. Mills. Geometry function of a linear brachytherapy source.  J. Appl. Clinical Med. Phys. 2 (2) (2001) 69-72.
  12. BEBIG Medical. Cobalt-60 source for HDR brachytherapy. Available from: https://www.bebigmedical.com/product/34.html.