Internal dosimetry calculations of lutetium-177 radionuclide used in radiosynovectomy using Monte Carlo code

Document Type : Original Article

Authors

1 Nuclear Fuel Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

2 Radiation Application Research School, Nuclear Science and Technology Research Institute, Tehran, Iran

10.22052/rsm.2025.256486.1093

Abstract

This study utilized the Monte Carlo simulation code MCNPX and the MIRD internal dosimetry approach to evaluate the absorbed dose distribution of the radionuclide Lutetium-177 in radiosynovectomy. The primary objective was to analyze the dose distribution pattern in the target tissue (synovial epithelial cells), critical tissues (synovium, articular cartilage, and joint bone), and other vital organs involved in this therapeutic method. The results of the depth-dose profile in the synovial joint indicated a maximum dose concentration in the superficial layers of the synovium, with an exponential dose reduction as depth increased. For an accumulated activity of 1 MBq, the absorbed dose in the synovial tissue was approximately 3.85×10⁻³ mGy/MBq, while in distant organs such as the liver it was about 1.15×10⁻⁹ mGy/MBq, indicating a high concentration of radiation in the target region and minimal exposure to other organs. This pattern confirms high therapeutic selectivity, ensuring that the dose received by adjacent healthy tissues remains within safe limits. Additionally, the absorbed dose in distant organs such as the liver, kidneys, and spleen were negligible. The validation process was conducted by comparing the dose values calculated by MCNPX with reference data from ICRP. The agreement between the results demonstrated the high accuracy of the numerical simulation and the reliability of the findings. The results affirm that Lutetium-177 radiosynovectomy, as a safe and targeted strategy, offers significant potential for optimizing treatment protocols and reducing side effects by focusing radiation optimally on pathological tissues while minimizing unnecessary exposure to healthy structures. This study provides a scientific foundation for enhancing clinical efficacy in the management of synovitis.

Keywords


  1. L. Ross-Stewart, L. Miles. Imagery, self-efficacy and chronic pain. J. Imag. Res. Sport Phys. Act. 19 (s1) (2024) pp. 20240014.
  2. I. Ahmad, H. Nisar. Dosimetry perspectives in radiation synovectomy. Physica Medica 47 (2018) 64-72.
  3. B. K. Das. Role of radiosynovectomy in the treatment of rheumatoid arthritis and hemophilic arthropathies. Biomed. Imaging Interv. J. 3 (4) (2007) e45.
  4. G. Dikmen, V. E. Ozden, K. Karaytug. Radiosynovectomy. Musculoskeletal Injections Manual: Basics, Techniques and Injectable Agents. Cham: Springer Nature, Switzerland, 2024
  5. G. Mödder. Radiosynoviorthesis (radiation synovectomy). Clin. Nucl. Med.  (2020) 1015-1024.
  6. J. Melchior, Y. Azraq, I. Chary-Valckenaere, A.C. Rat, P. Texeira, A. Blum, D. Loeuille. Radiography and abdominal CT compared with sacroiliac joint CT in the diagnosis of sacroiliitis. Acta Radiol. 58 (10) (2017) 1252-1259.
  7. R.A. Sprouse, A. M. McLaughlin, G. D. Harris. Braces and splints for common musculoskeletal conditions. Amer. Fam. Physician 98 (10) (2018) 570-576.
  8. A.W.S Rutjes, E. Nüesch, R. Sterchi, L. Kalichman, E. Hendriks, M. Osiri, L. Brosseau, S. Reichenbach, P. Jüni. Transcutaneous electrostimulation for osteoarthritis of the knee. Cochrane Database Syst. Rev. 4 (2009) CD002823.
  9. P. Vavken, F. Arrich, O. Schuhfried, R. Dorotka. Effectiveness of pulsed electromagnetic field therapy in the management of osteoarthritis of the knee: a meta-analysis of randomized controlled trials. J. Rehabilitation Med. 41 (6) (2009) 406-411.
  10. R. Bhardwaj, G. Kelkar, R. Bundela, P. Bodana, R. A. Gupta. Radiosynovectomy in the treatment of arthritis by Erbium isotopes. Int. J. Pharmacy Life Sci. 9 (5-6) (2018) 5805-5809.
  11. S. Shirvani-Arani, A. Mahmoodabadi, A. Bahrami-Samani, A. R. Jalilian, M. Mazidi, H. Afarideh. Preparation, quality control and biodistribution studies of 165Dy-chitosan for radiosynovectomy. Nukleonika 56 (4) (2011) 277-282.
  12. L. Knut. Radiosynovectomy in the therapeutic management of arthritis. World J. Nucl. Med.14 (01) (2015) 10-15.
  13. S. Vosoughi, A. R. Jalilian, S. Shirvani-Arani, A. Bahrami-Samani, N. Salek. Preparation of 166Dy/166Ho-chitosan as an in vivo generator for radiosynovectomy. J. Radioanal. Nucl. Chem. 311 (2017) 1657-1664.
  14. H. Yousefnia, A. R. Jalilian, F. Abbasi-Davani, S. Zolghadri, A Bahrami-Samani. Preparation and quality control of 177Lu-chitosan for radiosynovectomy. Iran J. Nucl. Med. 22 (1) (2014) 1-6.
  15. M. Silva, J. R. Luck, M. E. Siegel. 32P chromic phosphate radiosynovectomy for chronic haemophilic synovitis. Haemophilia 7 (2001) 40-49.
  16. IAEA. Production, quality control and clinical applications of radiosynovectomy agents. INTERNATIONAL ATOMIC ENER, 2021.
  17. S. Chakraborty, T. Das, V. Chirayil, S. P. Lohar, H. D. Sarma. Erbium-169 labeled hydroxyapatite particulates for use in radiation synovectomy of digital joints–a preliminary investigation. Radiochimica Acta 102 (5) (2014) 443-450.
  18. S. M. J. Mortazavi, S. Asadollahi, M. Farzan, S. Shahriaran, M. Aghili, S Izadyar, M. Lak. 32P colloid radiosynovectomy in treatment of chronic haemophilic synovitis: Iran experience. Haemophilia 13 (2) (2007) 182-188.
  19. S. Chakraborty, T. Das, S. Banerjee, H. D. Sarma, M. Venkatesh. Preparation and preliminary biological evaluation of 177Lu-labelled hydroxyapatite as a promising agent for radiation synovectomy of small joints. Nucl. Med. Commun. 27 (8) (2006) 661-668.
  20. N. Ahmadi, H. Yousefnia, A. Bahrami-Samani, S. Zolghadri, B. Alirezapour, F. M. Ghazi. Development of 186/188Re-Chitosan as an Effective Therapeutic Agent for Rheumatoid Arthritis. Curr. Radiopharm. 14 (2) (2021) 154-160.
  21. N. Salek, M. Shamsaei, M. M. Ghannadi Maragheh, S. Shirvani-Arani, A. Bahrami-Samani. Comparative studies of extraction chromatography and electro-amalgamation separation to produce no-carrier added 177Lu by Tehran research reactor. Iran J. Nucl. Med. 25 (1) (2017) 23-33.
  22. G. Sgouros, R. F. Hobbs. Dosimetry for radiopharmaceutical therapy. Seminars Nucl. Med. 44 (3) (2014) 172-178.
  23. J. O'Donoghue, P. Zanzonico, J. Humm, A. Kesner. Dosimetry in radiopharmaceutical therapy. J. Nucl. Med. 63 (10) (2022) 1467-1474.
  24. J. Capala, S. A. Graves, A. Scott, G. Sgouros, S. S. James, P. Zanzonico, B. E. Zimmerman. Dosimetry for radiopharmaceutical therapy: current practices and commercial resources. J. Nucl. Med. 62 (3) (2021) 3S-11S.
  25. A. T. S. Stelson, E. E. Watson, R. J. Cloutier. A history of medical internal dosimetry. Health Phys. 69 (5) (1995) 766-782.
  26. R. Loeevinger, M. Berman. A schema for absorbed-dose calculations for biologically-distributed radionuclides. J. Nucl. Med. (1968) 9-14.
  27. D. B. Pelowitz. Los Alamos National Laboratory report. LA-CP-05-0369, 2005.
  28. H. Yoriyaz, M. G. Stabin, A. dos Santos. Monte Carlo MCNPX-4B–based absorbed dose distribution estimates for patient-specific dosimetry. J. Nucl. Med. 42 (4) (2001) 662-669.
  29. Z. Jovanović, D. Krstić, D. Nikezić, J. M. G. Ros, P. Ferrari. MCNPX calculations of specific absorbed fractions in some organs of the human body due to application of 133Xe, 99mTc and 81mKr radionuclides. Radiat. Protect. Dosimetry 178 (4) (2018) 422-429.
  30. M. Mirzaie, A. A. Mowlavi, S. Mohammadi, H. Mirshekarpour. Absorbed dose calculation from beta and gamma rays of 131I in ellipsoidal thyroid and other organs of neck with MCNPX code. Iran South Med. J. 15 (3) (2012) 201-208.
  31. A. Bitar, A. Lisbona, P. Thedrez, C. S. Maurel. D. Le Forestier, J. Barbet, M. Bardies. A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNPX). Phys. Med. Biol. 52 (4) (2007) 1013.
  32. L. S. Johnson, J. C. Yanch, S. Shortkroff, C. L. Barnes, A. I. Spitzer, C. B. Sledge. Beta-particle dosimetry in radiation synovectomy. Eur. J. Nucl. Med. 22 (1995) 977-988.
  33. M. Stabin, J. Siegel, J. Hunt, R. Sparks, J. Lipsztein. RADAR: the radiation dose assessment resource—an online source of dose information for nuclear medicine and occupational radiation safety. J. Nucl. Med. 42 (5) (2001) 243.
  34. C. Hacker. Radiation decay, version 4. Griffith University, Gold Coast, 2000.