Public concerns about the risks of electromagnetic exposure from mobile networks for human health, have increased with new claims regarding the deployment of 5G networks. These concerns are mainly the result of misinterpretations about the nature and level of electromagnetic exposure from mobile networks. Some measurements carried out in real and operational telecommunications networks show that the levels of electromagnetic exposure are much lower than the permissible limits introduced in international guidelines and standards. In addition, studies show that the launch of 5G networks does not have a significant impact on the exposure levels. In this article, we study and analyze the level of radio frequency exposure in 5G networks. Simulations results show that how technologies used in these networks can be effective in reducing radio frequency exposure levels.
P. Staebler. Human Exposure to Electromagnetic Fields: From Extremely Low Frequency (ELF) to Radiofrequency. Wiley-ISTE. 1st ed. John Wiley & Sons, 2017.
Y. Stein, I. G. Udasin. Electromagnetic hypersensitivity (EHS, microwave syndrome) – Review of mechanisms. Environ. Res. 186 (2020) 109445.
F. de Vocht, P. Albers. The population health effects from 5G: Controlling the narrative. Front Public Health. 10 (2022) 1082031.
L. Chiaraviglio, A. Elzanaty, M. -S. Alouini. Health Risks Associated With 5G Exposure: A View From the Communications Engineering Perspective. IEEE Open J. Commun. Soc. 2 (2021) 2131-2179.
G. Wersényi. Health issues using 5G frequencies from an engineering perspective: Current Review. Open Eng. 12 (1) (2022) 1060-1077.
Electromagnetic Field (EMF) measurements near 5G mobile phone base stations: Summary of results, OFCOM, (2021).
I. A. I. Ahmad, F. Osasona, S. Onimisi Dawodu, O. C. Obi, A. C. Anyanwu, S. Onwusinkwue. Emerging 5G technology: A review of its far-reaching implications for communication and security. World J. Adv. Res. Rev. 21 (1) (2024) 2474–2486.
X. Ge, S. Tu, G. Mao, C. X. Wang, T. Han. 5G ultra-dense cellular networks. IEEE Wireless Commun. 23 (1) (2016) 72-79.
M. I. Mapa, D. K. M. Ibarlin, E. R. Arboleda. Optimizing antenna performance: A review of multiple-input multiple output (MIMO) antenna design techniques. Int. J. Sci. Res. Archive 12 (2) (2024) 438-444.
ICNIRP Guidelines for Limiting Exposure to Electromagnetic Fields (100 KHz tO 300 GHz). Health Phys. 118 (5) (2020) 483-524.
M. A. Hajj. Radio frequency exposure analysis in 5G massive MIMO systems. PH. D. Dissertation (2023).
IEC 62232. Determination of RF field strength, power density and SAR in the vicinity of base stations for the purpose of evaluating human exposure. (2022).
ETSI TR 138 901 V16.1.0. 5G Study on channel model for frequencies from 0.5 to 100 GHz (3GPP TR 38.901 version 16.1.0 Release 16) (2020).
M. Ruttner, H. Keller, B. Strutz, D. Šuka, S. Q. Wali. 5G FR1 exposure measurements: Comparison of different IEC 62232:2022 extrapolation methods. IOP Conf. Ser. Mat. Sci. Eng. 1320 (1) (2024) 012001.
استاندارد ملی ایران شماره 8567. پرتوهای غیریونساز-حدود پرتوگیری. بهار 1403.
Noori, N. (2025). Radio Frequency Exposure assessment in 5G networks. Journal of Radiation Safety and Measurement, 14(1), 49-60. doi: 10.22052/rsm.2025.256612.1116
MLA
Noori, N. . "Radio Frequency Exposure assessment in 5G networks", Journal of Radiation Safety and Measurement, 14, 1, 2025, 49-60. doi: 10.22052/rsm.2025.256612.1116
HARVARD
Noori, N. (2025). 'Radio Frequency Exposure assessment in 5G networks', Journal of Radiation Safety and Measurement, 14(1), pp. 49-60. doi: 10.22052/rsm.2025.256612.1116
CHICAGO
N. Noori, "Radio Frequency Exposure assessment in 5G networks," Journal of Radiation Safety and Measurement, 14 1 (2025): 49-60, doi: 10.22052/rsm.2025.256612.1116
VANCOUVER
Noori, N. Radio Frequency Exposure assessment in 5G networks. Journal of Radiation Safety and Measurement, 2025; 14(1): 49-60. doi: 10.22052/rsm.2025.256612.1116