Design of 166Dy/166Ho processed generator for the 166Ho Production of in Carrier-Free Form (CF)

Document Type : Original Article

Authors

1 Nuclear fuel cycle Research School, Nuclear Science and Technology Research Institute, P.O.BOX: 14893-836, Tehran, Iran

2 Radiation Application Research School, Nuclear Science and Technology Research Institute, P.O.BOX: 14893-836, Tehran, Iran

10.22052/rsm.2025.255625.1081

Abstract

The radionuclide 166Ho has garnered attention in nuclear medicine due to its desirable characteristics, including a short half-life (26.8 hours), beta particle emission with an average energy of 665.7 keV, and suitable gamma emission energy (80.6% at 80 keV) for imaging, along with high production feasibility using a medium flux reactor. 166Ho can be obtained through two reactions: a direct reaction 165Ho(n,γ)166Ho and an indirect reaction 164Dy(2n,γ)166Dy(β−)164Dy(2n,γ)166Dy(β−). This radionuclide can also be utilized in two forms: in vivo and processed radionuclide generators. This research aims to produce 166Ho by neutron bombardment of dysprosium in the Tehran Research Reactor with medium flux, followed by radiochemical separation and ultimately quality control of the produced product to establish a 166Dy/166Ho process generator. In this study, in order to produce the radionuclide 166Ho, 166Dy was initially produced through the irradiation of enriched dysprosium-164 (98.2%) with thermal neutrons in the Tehran Research Reactor. Subsequently, for separation, it was loaded into a column filled with Ln resin containing the extractant 2-ethylhexyl 2-ethylhexyl phosphonic acid (HEH[EHP]) using an extraction chromatography method. The radionuclide 166Ho was eluted from the column in a three-step process. The optimal elution time for the 166Dy/166Ho generator was 2.5 days. The average separation yield achieved using this method was 83%. The radionuclide purity of the produced 166Ho sample was determined using analysis by a germanium semiconductor detector. The results indicated that the final product 166Ho has a radionuclide purity of over 99%, with an activity 40.95 mCi and a specific activity of 100 Ci/mg, and the dysprosium leakage in the final sample was negligible (less than 0.2 µCi per millicurie of 166Ho).

Keywords


  1. F. Rösch. Radiolanthanides in endo radiotherapy: an overview. Radiochimica Acta 95 (2007) 303-311.
  2. C. S. Cutler, C. J. Smith, G. J. Ehrhardt, T. T. Tyler, S. S. Jurisson, E. Deutsch. Current and potential therapeutic uses of lanthanide radioisotopes. Cancer Bio. Radiopharm. 15 (2000) 531-545.
  3. D. Nayak and S. Lahiri. Application of radioisotopes in the field of nuclear medicine: I. Lanthanide series elements. J. Radioanalytical Nucl. Chem. 242 (1999) 423-432.
  4. F. Marques, A. Paulo, M. P. Campello, S. Lacerda, R. F. Vitor, L. Gano, R. Delgado, I. Santos. Radiopharmaceuticals for targeted radiotherapy. Radiat. Prot. Dosimetry 116 (1-4) (2005) 601-604.
  5. F. Zoller, M. Eisenhut, U. Haberkorn, W. Mier. Endoradiotherapy in cancer treatment—Basic concepts and future trends. Eur. J. Pharmacol. 625 (2009) 55-62.
  6. S. Maschauer, O. Prante. Radiopharmaceuticals for imaging and endoradiotherapy of neurotensin receptor‐positive tumors. J. Label. Compd. Radiopharm. 61 (2018) 309-325.
  7. M. Van de Voorde, K. Van Hecke, T. Cardinaels, K. Binnemans. Radiochemical processing of nuclear-reactor-produced radiolanthanides for medical applications. Coordination Chem. Rev. 382 (2019) 103-125.
  8. E. Dadachova, S. Mirzadeh, R. Lambrecht, E. Hetherington, F. Knapp. Separation of carrier-free 166Ho from Dy2O3 targets by partition chromatography and electrophoresis, J. Radioanal. Nucl. Chem. 199 (1995) 115-123.
  9. R. J. Mumper, U. Y. Ryo, M. Jay. Neutron-activated holmium-166-poly (L-lactic acid) microspheres: a potential agent for the internal radiation therapy of hepatic tumors. J. Nucl. Med. 32 (1991) 2139-2143.
  10. J. Turner, P. Claringbold, P. Klemp, P. Cameron, A. Martindale, R. Glancy, P. E. Norman, E. L. Hetherington, L. Najdovski, R. M. Lambrecht. 166Ho-microsphere liver radiotherapy: a preclinical SPECT dosimetry study in the pig. Nucl. Med. Commun. 15 (1994) 545-553.
  11. A. Aziz, A. Fathadina. Preliminary study for separation of Holmium-166 radioisotope from irradiated natural dysprosium oxide target at TRIGA 2000 Bandung reactor. In AIP Conference Proceedings (Vol. 2967, No. 1). AIP Publishing, 2024.
  12. M. Stella, A. J. Braat, R. van Rooij, H. W. de Jong, M. G. Lam, Holmium-166 radioembolization: current status and future prospective. Cardiovasc. Intervent. Radio. 45 (11) (2022) 1634-1645.
  13. S. V. Smith, N. Di Bartolo, S. Mirzadeh, R. M. Lambrecht, F. F. Knapp Jr, E. L. Hetherington. [166Dy] dysporium/[166Ho] holmium in vivo generator. Appl. Radiat. Isot. 46 (8) (1995) 759-764.
  14. Y. Feng, Y. Shao, Z. Li, M. Luo, D. Xu, L. Ma. Research Progress on Major Medical Radionuclide Generators. Processes 13 (2) (2025) p. 521.
  15. G. Ferro-Flores, O. Hernández-Oviedo, C. Arteaga de Murphy, J. I. Tendilla, F. Monroy-Guzmán, M. Pedraza-López, K. Aldama-Alvarado. [166Dy] Dy/166Ho hydroxide macroaggregates: an in vivo generator system for radiation synovectomy. Appl. Radiat. Isot. 61 (2004) 1227-1233.
  16. G. Ferro-Flores, C. A. de Murphy, M. Pedraza-López, F. Monroy-Guzmán, L. Meléndez-Alafort, J. Tendilla, R. Jiménez-Varela. Labeling of biotin with [166Dy] Dy/166Ho as a stable in vivo generator system. Int. J. Pharm. 255 (1-2) (2003) 129-138.
  17. M. Pedraza-López, G. Ferro-Flores, C. A. de Murphy, J. I. Tendilla, O. Villanueva-Sánchez, Preparation of 166Dy/166Ho-EDTMP: a potential in vivo generator system for bone marrow ablation. Nucl. Med. Commun. 25 (2004) 615-621.
  18. K. Choi, A. Kim. Method of separating carrier-free Ho-166 and purification using chromatography, 2021.
  19. N. Salek, S. Vosoughi, A. Bahrami Samani, Production calculations of 166Dy/166Ho in vivo generator through neutron irradiation in Tehran Research Reactor (TRR). J. Radiat. Safety Measurement 9 (6) (2020) 53-62.