Investigating the optimal conditions for scandium-43 radioisotope production in 30 MeV cyclotron via Monte Carlo simulation

Document Type : Original Article

Authors

1 Department of medical radiation engineering، Lahijan Branch، Islamic Azad University ، Lahijan ، Iran.

2 Department of Nuclear Engineering, Lahijan branch, Islamic Azad University, Lahijan, Iran

Abstract

Scandium-43 (43Sc) is a positron emitter radioisotope that can be used in PET imaging by emitting 511 KeV (176%) annihilation photon and 372.76 KeV gamma ray (23%). In this study, the theoretical production yield of 43Sc and its accompanying impurities in the 43Ca(p,n), 44Ca(p,2n), 46Ti(p,a), 42Ca(d,n), 40Ca(a,p) and 41K(a,2n) reactions to produce this radioisotope in 30 MeV Karaj cyclotron were calculated by simulating the excitation functions of these reactions in TALYS-1/96 and EMPIRE-3-2-2 Monte Carlo codes, and the mass stopping power in SRIM-2013 Monte Carlo code and the numerical integration of the production yield formula in MATLAB in the energy range of 0 to 30 MeV, and were compared with the experimental results. 44Sc is a radioisotopic impurity that is produced in the 44Ca(p,2n) and 41K(a,2n) reactions and it’s practically impossible to remove it from the final product; it’s produced in the 46Ti(p,a) reaction and can be removed by determining the energy range; and it isn’t produced in the 43Ca(p,n), 42Ca(d,n) and 40Ca(α,p) reactions. The results show that for the production of pure 43Sc with the highest yield, 43Ca(p,n) is the best reaction for Karaj cyclotron; but to produce a pure product with a suitable yield and the lowest possible cost, the 40Ca(α,p) reaction is a better choice.

Keywords


  1. A. R. Jalilian. Principles of Positron Emission Tomography Radiopharmaceuticals. Nuclear Science & Technology Research Institute, Tehran, Iran, 2012. [Persian]
  2. T. S. Carzaniga, M. Auger, S. Braccini, M. Bunka, A. Ereditato, K. P. Nesteruk, P. Scampoli, A. Türler, N. P. Van Der Meulen. Measurement of 43Sc and 44Sc production cross-section with an 18 MeV medical PET cyclotron. Appl. Radiat. Isot. 129 (2017) 96-102.
  3. M. Alabyad, G. Y. Mohamed, H. E. Hassan, S. Takács, F. Ditrói. Experimental measurements and theoretical calculations for proton, deuteron and α-particle induced nuclear reactions on calcium: special relevance to the production of 43,44Sc. J. Radioanalytical Nucl. Chem. 316 (2018) 119-128.
  4. L. Deilami-Nezhad, L. Moghaddam-Banaem, M. Sadeghi, M. Asgari. Production and purification of Scandium-47: A potential radioisotope for cancer theranostics. Appl. Radiat. Isot. 118 (2016) 124-130.
  5. F. Roesch. Scandium-44: benefits of a long-lived PET radionuclide available from the 44Ti/44Sc generator system. Cur. Radiopharmaceuticals 5 (3) (2012) 187-201.
  6. A. Singh, R. Baum, I. Klette, N. P. Van Der Meulen, C. Müller, A. Türler, R. Schibli. Scandium-44 DOTATOC PET/CT: First in-human molecular imaging of neuroendocrine tumors and possible perspectives for Theranostics. J. Nucl. Med. 56 (3) (2015) 267.
  7. C. Alliot, R. Kerdjoudj, N. Michel, F. Haddad, S. Huclier-Markai. Cyclotron production of high purity 44m, 44Sc with deuterons from 44CaCO3 targets. Nucl. Med. Bio. 42 (6) (2015) 524-529.
  8. N. P. Van Der Meulen, M. Bunka, K. A. Domnanich, C. Müller, S. Haller, C. Vermeulen, A. Türler, R. Schibli. Cyclotron production of 44Sc: from bench to bedside. Nucl. Med. Bio. 42 (9) (2015) 745-751.
  9. C. Müller, M. Bunka, J. Reber, C. Fischer, K. Zhernosekov, A. Türler, R. Schibli. Promises of cyclotron-produced 44Sc as a diagnostic match for trivalent β-emitters: in vitro and in vivo study of a 44Sc-DOTA-folate conjugate. J. Nucl. Med. 54 (12) (2013) 2168-2174.
  10. K. Szkliniarz, M. Sitarz, R. Walczak, J. Jastrzębski, A. Bilewicz, J. Choiński, A. Jakubowski, A. Majkowska, A. Stolarz, A. Trzcińska, W. Zipper. Production of medical Sc radioisotopes with an alpha particle beam. Appl. Radiat. Isot. 118 (2016) 182-189.
  11. T. S. Carzaniga, N. P. Van Der Meulen, R. Hasler, C. Kottler, P. Peier, A. Türler, E. Vermeulen, C. Vockenhuber, S. Braccini. Measurement of the 43Sc production cross-section with a deuteron beam. Appl. Radiat. Isot.145 (2019) 205-208.
  12. N. P. Van Der Meulen, R. Hasler. The possibility of producing 43Sc from 44Ca via the (p, 2n) nuclear reaction. Nucl. Med. Bio. 72 (2019) 9.
  13. K. V. Becker, E. Aluicio-Sarduy, T. Bradshaw, S. A. Hurley, A. P. Olson, K. E. Barrett, J. Batterton, P. A. Ellison, T. E. Barnhart, A. Pirasteh, J. W. Engle,. Cyclotron production of 43Sc and 44gSc from enriched 42CaO, 43CaO, and 44CaO targets. Front. Chem. 11 (2023) 1167783.
  14. M. Jeldani, A. R. Azadbar. Calculation of the production yield of theranostic 67Cu radioisotope via the 68Zn(p,2p)67Cu, 70Zn(p,α)67Cu, 70Zn(d,x)67Cu and 64Ni(α,p)67Cu reactions. J. Nucl. Sci., Eng. Tech. 45 (4) (2024) 179-189. [Persian]
  15. A. Jafari, M. R. Aboudzadeh, M. Sharifian, M. Sadeghi, A. Rahiminezhad, B. Alirezapour, S. Rajabifar. A Theoretical and Experimental study of the Theranostic Radionuclide Scandium-47 in Karaj Cyclotron. J. Nucl. Sci., Eng. Tech. 96 (3) (2021) 113-121. [Persian]
  16. F. F. Knapp, A. Dash. Radiopharmaceuticals for Therapy. Springer, New Delhi, India, 2016.
  17. A. Koning, S. Hilaire, S. Goriely. TALYS-1.96/2.0 Simulation of Nuclear Reactions. IAEA, Vienna, Austria, 2021.
  18. M. Herman, R. Capote, M. Sin, A. Trkov, B. V. Carlson, P. Oblozinsky, C. M. Mattoon, H. Wienkey, S. Hoblit, Y. S. Cho, G. P. A. Nobre, V. A. Plujko, V. Zerkin. EMPIRE-3.2 Malta: Modular System for Nuclear Reaction Calculations and NNuclear Data Evaluation. IAEA, Vienna, Austria, 2013.
  19. J. F. Ziegler, M. D. Ziegler, J. P. Biersack. SRIM-The Stopping and Range of Ions in Matter. Nucl. Instrum. Meth. B 268 (11-12) (2010) 1818-1823.
  20. V. N. Levkovski. Cross sections of medium mass nuclide activation (A= 40-100) by medium energy protons and alpha-particles (E= 10-50 MeV). Inter-Vesi, Moscow (1991).
  21. A. J. Howard, H. B. Jensen, M. Rios, W. A. Fowler, B. A. Zimmerman. Measurement and theoretical analysis of some reaction rates of interest in silicon burning. Astrophysical J. 188 (1974) 131-140.
  22. T. Matsuo, T. T. Sugihara. Evidence for low-momentum-transfer process in 41K(α,n)44m,gSc reactions from range measurements of products. Canadian J. Chem. 39 (3) (1961) 697-705.
  23. T. J. De Waal, M. Peisach, R. Pretorius. Activation cross sections for deuteron-induced reactions on calcium isotopes up to 5.5 MeV. Radiochimica Acta 15 (3) (1971) 123-127.
  24. T. J. De Waal, M. Peisach, R. Pretorius. Activation cross sections for proton-induced reactions on calcium isotopes up to 5.6 MeV. J. Inorganic Nucl. Chem. 33 (9) (1971) 2783-2789.
  25. M. Sitarz, K. Szkliniarz, J. Jastrzębski, J. Choiński, A. Guertin, F. Haddad, A. Jakubowski, K. Kapinos, M. Kisieliński, A. Majkowska, E. Nigron. Production of Sc medical radioisotopes with proton and deuteron beams. Appl. Radiat. Isot. 142 (2018) 104-112.
  26. K. A. Domnanich, R. Eichler, C. Müller, S. Jordi, V. Yakusheva, S. Braccini, M. Behe, R. Schibli, A. Türler, N. P. Van Der Meulen. Production and separation of 43Sc for radiopharmaceutical purposes. EJNMMI Radiopharmacy Chem. 2 (2017) 1-7.
  27. Prices of stable isotopes. Available at: https://institut-seltene-erden.de/unser-service-2/ metall-preise/preise-fuer-stabile-isotope. ccessed July 20, 2024.