Evaluation of the distribution of prompt gammas emission during proton therapy using the GATE Monte Carlo toolkit

Document Type : Original Article

Authors

Faculty of Science, University of Guilan, Namjoo St, Rasht, Iran

Abstract

One of the methods for monitoring the range of proton beams is the detection of instantaneous gammas resulting from proton-nucleus interactions inside the patient's body. In this study, the interaction of proton beams with energies of 90, 120, and 150 MeV with a PMMA phantom was simulated using the GATE Monte Carlo tool. The correlation between the proton dose distribution and the spatial distribution of instantaneous gammas in different energy windows, which were selected according to the resolvable peaks of the instantaneous gamma spectrum, was investigated. The results showed that the choice of energy window for detecting instantaneous gammas has a great impact on the accuracy of estimating the proton range using the instantaneous gamma distribution. Then, ideal detector cylinders with radii of 29, 49, 69, and 89 mm were simulated. The anisotropic distribution of the instantaneous gamma rays detected by the 89 mm radius detector cylinder showed that there is a preferred position concerning the proton beam position for detecting instantaneous gamma rays, which can be used to maximize the geometric efficiency of instantaneous gamma detection. The results showed that the preferred position for detecting instantaneous gamma rays depends on the proton beam energy and that with increasing proton energy this preferred position is found at a location further back than the proton beam position. In addition, the preferred position showed significant changes in the energy window. Next, using the equation of the line passing through the preferred positions obtained by the detector cylinders, we estimated the position with the maximum instantaneous gamma efficiency produced inside the phantom and compared it with the original position.

Keywords


  1. C. M. Charlie Ma, T. Lomax. Proton and Carbon Ion Therapy. Taylor and Francis Group. Boca Raton. United States, 2013.
  2. H. Pagnattti. Proton Therapy Physics. Taylor and Francis Group. Boca Raton. United States, 2011.
  3. J. Smeets, F. Roellinghoff, D. Prieels, F. Stichelbaut, A. Benilov, P. Busca, C. Fiorini, R. Peloso, M. Basilavecchia, T. Frizzi, J. C. Dehaes, A. Dubus. Prompt gamma imaging with slit camera for real-time range control in proton therapy. Phys. Med. Biol. 57 (11) (2012) 3371-3405.
  4. P. Dendooven, H. J. T. Buitenhuis, F. Diblen, P. N. Heeres, A. K. Biegun, F. Fiedler, M.-J. van Goethem, E. R. van der Graaf, S. Brandenburg. Shorted-lived positron emitters in beam-on PET imaging during proton therapy. Phys. Med, Biol. 60 (23) (2015) 8923-8947.
  5. M. Zarifi, S. Guatelli, Yujin Qi, David Bolst, Dale Prokopovich, Anatoly Rosenfeld. Characterization of prompt gamma ray emission for in vivo range verification in particle therapy: A simulation study. Phys. Med. 62 (2019) 20-32.
  6. A. C. Knopf, A. Lomax. In vivo proton range verification: a review. Phys. Med. Biol. 58 (15) (2013) R131-60.
  7. H. Paganetti, G EI. Fakhri. Monitoring proton therapy with PET. British J. Radiol. 88 (1051) (2015) 20150173.
  8. Sh. Ghafari, H. Afarideh. Detector conceptual design and image reconstruction of proton beam dose distribution during proton therapy. J. Nucl. Sci. Tech. 40 (3) (2019) 9-16.
  9. M. Moteabbed, S. Espana, H. Paganetti. Monte Carlo patient study on the comparison of prompt gamma and PET imaging for range verification in proton therapy. Phys. Med. Biol. 56 (4) (2011) 1063-82.
  10. J. C. Polf, D. Mackin, E. Lee, S. Avery, S. Beddar. Detecting prompt gamma emission during proton therapy: the effects of detector size and distance from the patient. Phys. Med. Biol. 59 (9) (2014) 376-384.
  11. J. -L. Wang, L. A. Cruz, M. Lu. Pixelated prompt gamma imaging detector for online measurement of proton beam: Monte Carlo feasibility study by FLUKA. Radiat. Detect. Technol. Methods 2 (4) (2018) 1-7.
  12. C. H. Kim, H. R. Lee, S. H. Kim, J. H. Park, S. Cho, W. G. Jung. Gamma electron vertex imaging for in-vivo beam-range measurement in proton therapy: Experimental results. Appl. Phys. Letters 113 (11) (2018) 114101.
  13. S. Kim, J. H. Jeong, Y. Ku, S. Byeong Lee, D. Shin, Y. K. Lim, H. Kim, C. H. Kim. Range shift verification in spot scanning proton therapy using gamma electron vertex imaging. Med. Phys. 51 (3) (2024) 1985-1996.
  14. C. H. Min, C. H. Kim, M. -Y. Youn, J.-W. Kim. Prompt gamma measurements for locating the dose falloff region in the proton therapy. Appl. Phys. Lett. 89 (18) (2006) 183517.
  15. M. Testa, M. Bajard, M. Chevallier, D. Dauvergne, N. Freud, P. Henriquet, S. Karkar, F. Le Foulher, J. M. Létang, R. Plescak, C. Ray, M.-H. Richard, D. Schardt, E. Testa. Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection. Radiat. Environ. Biophys. 49 (3) (2010) 337-343.
  16. H. Taghipour, P.Taherparvar. Comparison of different model predictions on RBE in the proton therapy technique using the GATE code. J. Radiat. Safety Measurement 9 (4) (2020) 15-24.
  17. C. Thiam, V. Breton, D. Donnarieix, B. Hhabib, L. Maigne.Validation of dose deposited by low-energy photons using GATE/GEANT4. Phys. Med. Biol. 53 (11) (2008) 30 -39.
  18. P. Taherparvar, A. Sadremomtaz. Development of GATE Monte Carlo simulation for a CsI pixelated gamma camera dedicated to high resolution animal SPECT. Australas. Phys. Eng. Sci. Med. 41 (2018) 31-39.
  19. P. Taherparvar, Z. Fardi. Comparison between dose distribution from 103Pd, 131Cs, and 125I plaques in a real human eye model with different tumor size. Appl. Radiat. Isot. 182 (2022) 110146.
  20. J. C. Polf, S. Peterson, S. Peterson, M. McCleskey, B. T. Roeder, A. Spiridon, S. Beddar, L. Trache. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation. Phys. Med. Biol. 54 (22) (2009) N519-N527.
  21. J. M. Verburg, K. Riley, T. Bortfeld, J. Seco. Energy and time resolved detection of prompt gamma rays for proton range verification. Phys. Med. Biol. 58 (20) (2013) L37-L49.
  22. G. Lonn. In-beam proton rang monitoring during proton therapy. Project in Engineering Physic, School of Engineering Sciences, Stockholm, Sweden. (2016) 28 pp.
  23. S. R. Cherry, J. A. Sorenson, M. E. Phelps. Physics in Nuclear Medicine. 4th Edition, Elsevier Inc., Philadelphia, 2012.
  24. M. Zarifi, S. Guatelli, D. Bolst, B. Hutton, A. Rosenfeld, Y. Qi. Characterization of prompt gamma-ray emission with respect to the Bragg peak for proton beam range verification: A Monte Carlo study. Phys. Med. 33 (2017) 197-206.
  25. F. M. F. C. Janssen, G. Landry, P. Cambraia Lopes, G. Dedes, J. Smeets, D. R. Schaart, K. Parodi, F. Verhaegen. Factors influencing the accuracy of beam range estimation in proton therapy using prompt gamma emission. Phys. Med. Biol. 59 (15) (2014) 4427-4441.
  26. J. M. Verburg, J. Seco. Proton range verification through prompt gamma-ray spectroscopy. Phys. Med. Biol. 59 (23) (2014) 7089-7106.
  27. Sh. Ghafari, Z. Riazi, H. Afarideh. Detector conceptual design and image reconstruction of a Compton camera system used for verification of proton beam dose distribution during proton therapy. J. Nucl. Sci. Eng. Technol. 40 (3) (2019) 9-16.