Simulation of neutron imaging system of Tehran research reactor using MCNPX code and DXTRAN spheres variance reduction technique

Document Type : Original Article

Authors

Physics Department, Imam Hossein Comprehensive University, Tehran, Iran

10.22052/rsm.2024.255012.1067

Abstract

Performing Monte Carlo simulation calculations for the neutron imaging system of the Tehran Research Reactor (TRR) as a complex system is usually very time-consuming. By using variance reduction methods, this time can be reduced to obtain results with sufficient accuracy. Each of the variance reduction techniques has its own advantages, problems, and characteristics, so the user is responsible for choosing the proper variance reduction method. In this research, the effect of using the variance reduction method of DXTRAN spheres in calculating the neutron and gamma dose rate at a point located in the neutron imaging system of the TRR has been selected and its results have been analyzed. For this purpose, by using the results of simulation with MCNPX code and calculation of neutron flux and dose at the E beam tube of TRR and simulating the imaging chamber, neutron dose rate and gamma rays using Tally F4 in two analog and non-analog ways were calculated. Also, for each mode, the Figure of Merit (FOM) for the number of different histories was compared. The results show that the use of this technique helps to reduce the calculation time until an acceptable variance is reached, although the effect of this method is not the same in the case of calculations related to neutrons and gamma, as well as increasing the FOM. This method also resulted in a significant increase in FOM in both neutron and gamma cases.

Keywords


  1. M. H. Choopan Dastjerdi, H. Khalafi, Y. Kasesaz. Design, construction, and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor, Nucl. Instrum. Methods Phys. Res. A 818 (2016) 1-8.
  2. M. H. Choopan Dastjerdi, H. Khalafi. Design a thermal neutron beam for a new nuclear imaging facility at Tehran research reactor. Phys. Procedia 69 (2015) 92-95.
  3. M. H. Choopan Dastjerdi, A. Movafeghi, H. Khalafi, Y. Kasesaz. The quality assessment of radial and tangential neutron radiography beamlines of TRR. JINST 12 (2017) P07008.
  4. ب. رکرک، م. ح چوپان دستجردی، ا. موافقی. طراحی و ساخت ملزومات سامانه پرتونگاری نوترونی در رآکتور تحقیقاتی تهران با قابلیت تصویربرداری دیجیتال زمان واقعی. مجله فناوری آزمون­های غیرمخرب. 2 (7) (1399) 32-24. ‎
  5. م. زمانی و م. شایسته. به ‌روزرسانی محاسبات طیف و شار نوترون و گاما در دریچه لوله پرتوE راکتور تحقیقاتی تهران، مورد استفاده در سامانه­ی دیجیتال تصویربرداری نوترونی، خلاصه مقالات بیست و نهمین کنفرانس ملی هسته­ای ایران، 7 اسفند 1401، دانشگاه شهید بهشتی، تهران، ایران، 1401.
  6. م. ا. امیرخانی دهکردی، م. م. سید حبشی، ع. رحیمیان، ر. عادلی. مطالعات نوترونی و ایمنی کانال خشک در قلب راکتور تهران، بیست و ششمین کنفرانس هسته­ای ایران، دانشگاه صنعتی خواجه‌نصیرالدین طوسی، تهران، ایران، 1398.
  7. M. Zamani, M. Shayesteh. Benchmark MCNP computer code simulation results against experimental data of neutron flux and spectrum from the neutron imaging system of the Tehran research reactor. Radiat. Phys. 5 (1) (2024) 11-19.
  8. Y. Kasesaz, B. Rokrok, H. Choopan Dastjerdi. Radiation safety assessment of the new neutron radiography system at Tehran research reactor. J. Radiat. Safety Measurement 9 (4) (2020) 251-256.
  9. X-5 Monte Carlo Team 2003 MCNP - A General Monte Carlo N-Particle Transport Code, Version 5 (Oak Ridge: Los Alamos National Laboratory) LAUR-03-1987 LA-CP-03-0245.
  10. M. B. Chadwick, ENDF/B-VII Next generation evaluated nuclear data library for nuclear science and technology, nuclear data sheets, special issue on evaluated nuclear data file ENDF/B-VII (Brookhaven: National Nuclear Data Center), 2006.
  11. N. J. Carron. An Introduction to the Passage of Energetic Particles through Matter. TK Mission Research Corporation Santa Barbara, Taylor & Francis Group, California, USA, 2006.
  12. T. E. Booth, R. A. Forster, R. L. Martz. MCNP variance reduction developments in the 21stcentury. Nucl. Tech. 180 (3) (2012) 355-371.
  13. R. Olsher. A practical look at Monte Carlo variance reduction methods in radiation shielding. Nucl. Eng. Tech. 38 (3) (2006) 225-230.
  14. T. E. Booth. Sample problem for variance reduction in MCNP (No. LA-10363-MS). Los Alamos National Lab., NM (USA), 1985. 
  15. S. Kilby, J. Fletcher, Z. Jin, A. Avachat, D. Imholte, N. Woolstenhulme, H. Lee, J. Graham. Comparison of a semi-analytic variance reduction technique to classical Monte Carlo variance reduction techniques for high aspect ratio pencil beam collimators for emission tomography applications. Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment 1001 (2021) 165236.
  16. N. Petoussi-Henss, W. E. Bolch, K. F. Eckerman, A. Endo, N. Hertel, J. Hunt, M. Pelliccioni, H. Schlattl, M. Zankl. Conversion coefficients for radiological protection quantities for external radiation exposures. Ann. ICRP 40 (2-5) (2010) 1-257.