Monte Carlo simulation and performance evaluation of vehicle radiation portal monitor

Document Type : Original Article

Authors

1 Radiation Application Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran, I. R. Iran, P. O. Box:141551339

2 Iran Radiation Application Development Company (IRAD Co.), Atomic Energy Organization of Iran, Tehran, I. R. Iran, P. O. Box:14395-836

3 Radiation Application Research School, Nuclear Science and Technology Research Institute, Atomic Energy Organization of Iran, Tehran, I.R. of Iran, P. O. Box:141551339

10.22052/rsm.2024.254827.1060

Abstract

In this paper, by using Monte Carlo simulation of MCNPX software, the design and optimization of the dimensions and distances between the plastic scintillation detectors used in the gamma ray portal monitor in order to build based on these optimized dimensions It can be. The test and performance evaluation steps of the gamma ray portal monitor based on the radiation acceptance test section of the International Electrotechnical Commission standard No. IEC 62244:2024 including the false alarm test, the background effects test (on the performance of the detectors), the gamma radiation detection test and the out-of-range response test is accepted. The results of the conducted evaluation tests confirm the compliance of this portal monitor with the IEC 62244 standard. Based on this, it can be concluded that the design, simulation and placement of the detectors have been done with sufficient accuracy and are approved. Also, the minimum detectable activity of the device for the 60Co source was equal to 0.7 microcurie activity and for the 137Cs source equal to 1.5 microcurie activity at 1 meter with a discrimination level of ±2.7σ, which is comparable to the available commercial monitors.

Keywords


  1. A. S. Paschoa, F. Steinhäusler. Chapter 3-Terrestrial, atmospheric, and aquatic natural radioactivity. Radioactivity Environ. 17 (2010) 29-85.
  2. F. O. Ogundare, C. U. Nwankwo. Radionuclide content of, and radiological hazards associated with samples from the different streams of metal recycling facilities. Radioprotection50 (1) (2015) 55-58.
  3. M. Askari, J. Kochakpour, A. Taheri. Investigation of plastic scintillation detectors for detecting the radioactive materials. J. Nuclear Sci. Tech. (JonSat) 43 (2) (2022) 125-132.
  4. H. Sim, H. Seo, S. Yoon, H. Choi, H. Kim, J. Jang. Suppression of Background Count by Cargo Containers in Radiation Portal Monitor. IEEE Trans. Nuclear Sci. 71 (5) (2024) 1026-1032.
  5. H. C. Lee, W. G. Shin, H. J. Park, D. H. Yoo, C. I. Choi, C. S. Park, C. H. Min. Validation of energy-weighted algorithm for radiation portal monitor using plastic scintillator. Appl. Radiat. Isot. 107 (2016) 160-164.
  6. J. Davis, S. A. Dewji, E. Abelquist, N. Hertel. Synopsis of the oak ridge radiation protection research needs workshop. Health Phys. 116 (1) (2019) 69-80.
  7. A. Tiberinus. Development of advanced Radiation Portal Monitors (RPM) for high-speed RN detection. CRBNE Research and Innovation Conference - 5th International conference nrbce research and innovation, May 2022, lille, France, 2022.
  8. M. Voytchev, R. Radev. Radiation Protection Instrumentation: IEC International Standards for Performance Requirements (No. LLNL-PROC-751886). Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 2018.
  9. J. Moon, J. Kim, H. Chung, S. W. Kwak, K. T. Lim. Evaluation of neutron attenuation properties using helium-4 scintillation detector for dry cask inspection. Nuclear Eng. Tech.55 (9) (2023) 3506-3513.
  10. C. A. L. Presti, D. R. Weier, R. T. Kouzes, J. E. Schweppe. Baseline suppression of vehicle portal monitor gamma count profiles: A characterization study. Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment 562 (1) (2006) 281-297.
  11. E. R. Bariev, G. F. Novikov, L. F. Rozdyalouskaya, National experience in securing and managing radioactive sources. Security of Radioactive Sources 46 (2005).
  12. M. Amin, J. Triyanto, E. Nasrullah, F. Harahap,
    Rancangan perangkat lunak akuisisi data untuk unit deteksi BDRM05. PRIMA-Aplikasi dan Rekayasa dalam Bidang Iptek Nuklir 18 (1) (2021) 1-10.
  13. R. Turner. Scrap metals industry perspective on radioactive materials. Health Phys. 91 (5) (2006) 489-493.
  14. D. Prifti, K. Tushe, C. Massey, E. Bylyku, B. Daci. Norm alarm assessment safety issues in Albania. European Phys. J. Special Topics (2023) 1-9.
  15. M. Monshizadeh, E. Javadi, M. Khosravani, H. Sayyar, M. Yahaghi, R. Roozedar, A. Ghalehasadi, A. Taheri, S. P. Shirmardi. Design and construction of a vehicle radiation portal monitor to detect radioactive materials. J. Radiati. Safety and Measurement 12 (4) (2024) 209-222.
  16. ی. روشن مختار، م. تاجیک، ر. قلی­پور پیوندی. بررسی تأثیر موقعیت نسبی چشمه و سوسوزن در بازدهی سوسوزن پلاستیک مکعبی بزرگ. پژوهش سیستم­های بس ذره­ای 8 (18) (1397) 61-68.
  17. ر. آزاد دوست، ج. رحیقی، م. لامعی رشتی. طراحی و ساخت سیستم مانیتورینگ مواد پرتوزا برای استفاده در ورودی کارخانجات. پایان نامه کارشناسی ارشد، دانشگاه آزاد واحد مرکزی تهران، تهران.
  18. م. عسکری، ج. کوچک پور، ع. طاهری، ا. حسینی. ارزیابی عملکرد پایش‌­گر پرتویی 1-2020NSTRI-RPM- برای چشمه‌­های پرتوزا در حال حرکت. بیست و هفتمین کنفرانس هسته‌‌­ای ایران، دانشگاه فردوسی مشهد، ایران.
  19. BSN, IEC 62244:2022 Radiation protection instrumentation – Installed radiation portal monitors (RPMs) for the detection of illicit trafficking of radioactive and nuclear materials, ISBN 978-2-8322-6660-1, 2022.
  20. S. Santosa, K. Khotimah, A. R. Kumaraningrum. Application of prototype radiation portal monitor 15 based on IEC 62244: 2019 with technology audit supporting detection of radioactive sources: A review. AIP Conf. Proc. 2501 (1) (2022) 030017.
  21. S. Apikyan, D. Diamond, R. Way. Prevention, Detection and Response to Nuclear and Radiological Threats. Springer Science & Business Media, 2007.