Design and construction of a vehicle radiation portal monitor to detect radioactive materials

Document Type : Original Article

Authors

1 Iran Radiation Application Development Company (IRAD Co.), Atomic Energy organization of Iran, Tehran, I. R. Iran, P.O. Box: 14395-836

2 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran, Iran, P.O. Box: 14395-836

3 Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, Tehran, Iran

Abstract

The design and construction of a radiation portal monitor for the detection of radioactive materials and pollution, the control of the transportation of radioactive materials, and the inspection and identification of radioactive materials in customs, with an emphasis on monitoring the inner space of vehicles and truckloads, was carried out in Iran's Radiation Application Development Company (IRAD Co.). The radiation portal monitor can be installed as a gate on both sides of the entrance of factories, nuclear facilities, customs, airports and borders, and it is considered a new way to deal with the dangers caused by radioactive materials. This system is sensitive to very low levels of radioactive contamination. It comprises electronic circuits, mechanical holders, and four plastic scintillation detectors as a monitoring system. Some of the equipment of this system include a camera for taking photos of the license plate, ability to install the automatic control barrier, the remote-control center, the indicator light to inform the driver of the situation, and the visual and audio warning signs. Functional tests using a 137Cs source with an activity of 3 µci showed that the radiation portal monitor could detect a source inside the car with a minimum activity of 3 µci at a range of 100 cm. This system is also very accurate in identifying the same source when it moves at a maximum speed of 1.4 m/s.

Keywords


  1. R. Coogan, C. Marianno, W. Charlton. A strategic analysis of stationary radiation portal monitors and mobile detection systems in border monitoring. Nucl. Eng. Technol. 52 (3) (2020) 626-632.
  2. X. Sun, H. Hao, Z. Liu, F. Zhao, J. Song. Tracing global cobalt flow: 1995–2015.Resour. Conservation Recycl. 149 (2019) 45-55. 
  3. M. Esser, A. Borremans, A. Dubgorn, A. Shaban. Nuclear waste transportation: quality assurance and control. Transport. Res. Procedia54 (2021) 871-882.
  4. A. Taddei, F. Hediger, F. R. Neumann, S. M. Gasser. The function of nuclear architecture: a genetic approach.  Rev. Genet.38 (2004) 305-345.
  5. J. Ely, R. Kouzes. The use of energy windowing to discriminate SNM from NORM in radiation portal monitors. Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment 560 (2) (2006) 373-387.
  6. A. V. Dudkin. Radiation portal monitors: problems and development prospects. Adv. Mater. Res. 1084 (2015) 702-707.
  7. J. Bendahan. Review of active interrogation techniques. Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment 954 (2020) 161120.
  8. K. Jenkins, P. Johns, M. Demboski, E. Gordon, A. Kriss, J. Magana. Characterizing Relocatable Radiation Detectors for Evolving Nuclear Security Missions. J. Nucl. Mater. Management 49 (4) (2022) 46-63.
  9. B. T. Koo, H. C. Lee, K. Bae, Y. Kim, J. Jung, C. S. Park, C. H. Min. Development of a radionuclide identification algorithm based on a convolutional neural network for radiation portal monitoring system. Radiat. Phys. Chem.180 (2021) 10930.
  10. م. عسکری، ج. کوچک­پور، ع. طاهری. بررسی و مطالعه آشکارسازهای سوسوزن پلاستیکی برای به کارگیری در سیستم‌های کشف مواد پرتوزا. مجله علوم و فنون هسته‌­ای 100 (2) (1401) 125-132.
  11. م. عسکری، ج. کوچک­پور،ع. طاهری، ا. حسینی. ارزیابی عملکرد پایش‌گر پرتویی NSTRI-RPM-2020-1برای چشمه‌های پرتوزا در حال حرکت. بیست و هفتمین کنفرانس هسته‌ای ایران، دانشگاه فردوسی مشهد، ایران، 1399.
  12. H. Sim, H. Choi, S. Baek, H. Seo, H. Choi, H. Kim, J. Jang. Effects of rainfall and temperature on background signal of radiation portal monitor. Radiat. Prot. Dosimetry199 (8-9) (2023) 710-715.
  13. P. E. Fehlau, G. S. Brunson. Coping with plastic scintillators in nuclear safeguards. IEEE Trans. Nucl. Sci.30 (1) (1983) 158-161.
  14. C. Lee, W. G. Shin. Validation of energy-weighted algorithm for radiation portal monitor using plastic scintillator. Appl. Radiat. Isotopes 107 (2016) 160-164.
  15. M. G. Paff, M. L. Ruch, A. Poitrasson-Riviere, A. Sagadevan, S. D. Clarke, S. Pozzi. Organic liquid scintillation detectors for on-the-fly neutron/gamma alarming and radionuclide identification in a pedestrian radiation portal monitor. Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment 789 (2015) 16-27.
  16. G. F. Knoll. Radiation Detection and Measurement. 1st ed., John Wiley & Sons, New York, 2010.
  17. V. A. Morozov, N. V. Morozova, P. Budzyński. Delayed electron emission in photomultiplier tubes. Nucl. Instrum. Methods Phys. Res. Sec. A: Accelerators, Spectrometers, Detectors and Associated Equipment1053 (2023) 168323.
  18. M. Askari, J. Kochakpour, A. Taheri. Investigation of plastic scintillation detectors for detecting the radioactive materials.J. Nucl. Sci. Technol. (JonSat) 43 (2) (2022) 125-132.
  19. W. R. Leo. Techniques for Nuclear and Particle Physics Experiments: a How-to Approach. Springer Science & Business Media, Berlin, 2012.
  20. B. T. Chu. Stability of Systems Containing a Heat Source-the Rayleigh Criterion. National Advisory Committee for Aeronautics, 1956.