Feasibility study for the production of trans-uranium radionuclides in a typical research reactor

Document Type : Original Article

Authors

1 Reactor and nuclear safety research school, Nuclear Science and Technology Research Institute, P.O.BOX: 1439955933, Tehran, Iran

2 Nuclear fuel cycle research school, Nuclear Science and Technology Research Institute, P.O.BOX: 1439955933, Tehran, Iran

Abstract

The production of trans-uranium isotopes such as Am-241 and Cf-252 is done using irradiated reactor fuels or by irradiating targets in the core of research reactors. The main production of these two radionuclides is done in America and Russia. In this study, at first, the feasibility study of producing these nuclides using the irradiated fuels of a typical research reactor for two powers of 5 and 10 megawatts has been done using the ORIGEN code. In another part, calculations for the target of uranium with 99.7% by weight of uranium-238, which exists at the end of the enrichment cycle, has also been done. The results of the calculations show that the production efficiency of trans-uranium radionuclides in 10 MW power is many times higher than 5 MW. Also, the efficiency of trans-uranium radionuclides production using the target irradiation of depleted uranium is about 2 times higher than the radionuclides produced form the irradiated fuel of the typical 5 MWe research reactor.

Keywords


  1. G. G. Eichholz. Radioisotope Engineering. Am. J. Phys. Med. Rehabil. 53 (6) (1974) 301.
  2. W. H. Runde, W. W. Schulz. Americium. in: L. R. Morss, N. M. Edelstein, J. Fuger, J. Katz. The Chemistry of the Actinide and Transactinide Elements (Volumes 1-5). Springer (2006) 1265-1395.
  3. S. M. Robinson, D. E. Benker, E. D. Collins, J. G. Ezold, J. R. Garrison, S. L. Hogle. Production of Cf-252 and other transplutonium isotopes at Oak Ridge National Laboratory. Radiochim. Acta. 108 (9) (2020) 737-746.
  4. S. M. Robinson, B. D. Patton, M. Du, N. A. Quintero, N. Bridges. Processing and disposition of special actinide target materials. Oak Ridge National Lab (ORNL). TN (United States), 2017.
  5. Z. Hölgye, R. Filgas. Almost twenty years'search of transuranium isotopes in effluents discharged to air from nuclear power plants With VVER reactors. Health phys. 90 (2006) 328-336.
  6. S. McDeavitt, A. Parkison, A. Totemeier, J. Wegener. Fabrication of cermet nuclear fuels designed for the transmutation of transuranic isotopes. In: materials science forum. Trans Tech Publ. (2007) 1733-1736.
  7. J. Guzmán, G. Espinosa-Paredes, J. François, C. Martín-del-Campo. A. Nuñez-Carrera. Radiotoxicity of transuranics recycling in heterogeneous fuel assemblies for boiling water reactors. Prog. Nucl. Energy. 52 (2010) 698-706.
  8. Y. Sasaki, K. Morita, M. Matsumiya, M. Nakase. Simultaneous separation of Am and Cm from Nd and Sm by multi-step extraction using the TODGA-DTPA-BA-HNO3 system. Radiochim. Acta. 108 (2020) 689-699.
  9. J. M. Gogolski, P. R. Zalupski, T. S. Grimes, M. P. Jensen. Neptunium extraction by N, N-dialkylamides. Radiochim Acta. 108 (2020) 707-716.
  10. Z. Wang, X. Dong, Q. Yan, J. Chen, C. Xu. Separation of americium from curium through oxidation state control with record efficiency. Anal. Chem. 94 (2022) 7743-7746.
  11. X. -Q. Deng, S. -G. Zhou. Examination of promising reactions with Am 241 and Cm 244 targets for the synthesis of new superheavy elements within the dinuclear system model with a dynamical potential energy surface. Phys. Rev. 107 (2023( 014616.
  12. Y.-l. Wang, F. F.  Li, Z. Xiao, C. Z. Wang, Y. Liu, W. Q. Shi, H. He. Experimental and theoretical studies on the extraction behavior of Cf (iii) by NTAamide (C8) ligand and the separation of Cf (iii)/Cm (iii). RSC. Adv. 13 (6) (2023) 3781-3791.
  13. D. Pelowitz. MCNP6 User’s Manual (Los Alamos National Laboratory). LACP-00634. May, 2013.
  14. M. Bell. "ORIGEN: the ORNL isotope generation and depletion code. (Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States), 1973.
  15. W. Wilson, T. England, M. Herman, R. MacFarlane, D. Muir, in Conference Proceedings-Italian Physical Society. (Editrice Compositori) 59 (1997) 1454-1457.
  16. AEOI, TRR Safety Analysis Report. Safety Analysis Report for Tehran Research Reactor, Atomic Energy Organization of Iran, 2011.
  17. I. H. Bokhari, T. Mahmood. Engineered safety feature, an emergency core cooling system at Pakistan research reactor-1. Annal. Nucl. Energy. 35 (2008) 1167-1170
  18. R. Khan, M. Ali, M. Babar, T. Stummer, H. Boeck. Safety Parameters of the Pakistan Research Reactor-1. In Research Reactors: Safe Management and Effective Utilization. Summary of an International Conference. Companion CD-ROM, 2017.
  19. T. Mahmood, I. H. Bokhari, M. Iqbal, N. Ahmed, M. Israr. Performance evaluation/analysis of Pakistan Research Reactor-1 (PARR-1) current core configuration. Prog. Nucl. Energy. 53 (6) (2011) 729-735.