Analytical calculations of platinum-195m production in Tehran research reactor to estimate the required activity in theranostic applications

Document Type : Original Article

Authors

Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran

Abstract

Platinum agents continue to be the main chemotherapeutic agents used in the treatment of cancer. Cisplatin agents labeled with platinum-195m theranostic radionuclide can potentially be a useful tool to determine the patient's dose and also assist in the investigation of the mechanism of Cis-platinum’s action and its metabolism in the human body. 195mPt radionuclide with suitable nuclear properties can be easily used in the synthesis of platinum-based cytotoxic compounds. In this study, production calculations of platinum-195m in the Tehran Research Reactor (TRR) were performed through the simultaneous solution of differential equations of the decay chains for natural platinum and natural iridium targets using MATLAB software. Natural platinum and iridium targets were irradiated in the TRR and after the radiochemical process, the experimental value of activity of 195mPt resulting from the irradiation of the natural platinum target was compared with the theoretical values. The results showed that there is good compatibility between the measured values experimentally and the results of the theoretical calculations. The results of this research can be used in studies of Cis-platinum labeling with platinum-195m.

Keywords


  1. W. S. C. Williams. Nuclear and Particle Physics. Clarendon Press, Oxford, 1991.
  2. D. A. Fennell, Y. Summers, J. Cadranel, T. Benepal, D. C. Christoph, R. Lal, M. Das, F. Maxwll, C. Visseren-Grul, D. Ferry. Cisplatin in the modern era: The backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev. 44 (2016) 42-50.
  3. N. O'Rourke, M. Roqué i Figuls, N. Farré Bernadó, F. Macbeth. Concurrent chemoradiotherapy in non‐small cell lung cancer. Cochrane Database Syst. Rev. (6) (2010) CD002140.
  4. J. A. Green, J. J. Kirwan, J. Tierney, C. L. Vale, P. R. Symonds, L. L. Fresco, C. Williams, M. Collingwood. Concomitant chemotherapy and radiation therapy for cancer of the uterine cervix. Cochrane Database Syst. Rev. (3) (2005) CD002225.
  5. M. Espinosa Bosch, A. J. Ruiz Sánchez, F. Sánchez Rojas, C. Bosch Ojeda. Analytical methodologies for the determination of cisplatin. J. Pharm. Biomed. Anal. J. Pharmaceut Biomed47 (3) (2008) 451-459.
  6. R. C. Lange, R. P. Spencer, H. C. Harder. Synthesis and Distribution of a Radiolabeled Antitumor Agent. cis-diamminedichloroplatinum (II). J. Nucl. Med. 13 (1972) 328-330.
  7. F. Rösch, H. Herzog, S. M. Qaim. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals10 (2) (2017) 56.
  8. ­J. Areberg, S. Björkman, L. Einarsson, B. Frankenberg, H. Lundqvist, S. Mattsson, K. Norrgren, O. Scheike, R. Wallin. Gamma camera imaging of platinum in tumours and tissues of patients after administration of 191Pt-cisplatin. Acta Oncol. 38 (2) (1999) 221-228.
  9. S. V. Smith. U.S. Patent No. 7,108,845. U.S. Patent and Trademark Office. Washington, DC, 2006.
  10. J. R. Zeevaart, J. Wagener, B. Marjanovic-Painter, M. Sathekge, N. Soni, C. Zinn, G. Perkins, S.V. Smith. Production of high specific activity 195mPt-cisplatinum at South African Nuclear Energy Corporation for Phase 0 clinical trials in healthy individual subjects. J. Label. Compd. Radiopharm. 56 (9-10) (2013) 495-503.
  11. M. Sathekge, J. Wagener, S. V. Smith, N. Soni, B. Marjanovic-Painter, C. Zinn, C. Van de Wiele, Y. D’Asseler, G. Perkins, J. R. Zeevaart. Biodistribution and dosimetry of 195mPt-cisplatin in normal volunteers. Nuklearmedizin Nucl. Med. 52 (06) (2013) 222-227.
  12. A. S. Voyles. Nuclear Excitation Functions for the Production of Novel Medical Radionuclides. University of California, Berkeley, 2018. 
  13. S. M. Qaim, F. Tárkányi, R. Capote (Eds.). Nuclear data for the production of therapeutic radionuclides. Internat. IAEA Techn. Reports Series No. 473 (2011) 1-358. 
  14. P. J. Hoskin. Radiotherapy in Practice-Radioisotope Therapy. OUP Oxford, 2007. 
  15. S. M. Qaim. Progress report on nuclear data research in the Federal Republic of Germany. Forschungszentrum Juelich GmbH (Germany). Inst. fuer Nuklearchemie, 1998. 
  16. J. Areberg, K. Norrgren, S. Mattsson. Absorbed doses to patients from 191Pt-, 193mPt-and 195mPt-cisplatin. Appl. Radiat. Isot.51 (5) (1999) 581-586.
  17. R. C. Lange, R. P. Spencer, H. C. Harder. The antitumor agent cis-Pt (NH3) 2Cl2: distribution studies and dose calculations for 193mPt and 195mPt. J. Nucl. Med. 14 (4) (1973) 191-195.
  18. E. A. Aalbersberg, B. J. de Wit – van der Veen, O. Zwaagstra, K. Codée – van der Schilden, E. Vegt, WV. Vogel. Preclinical imaging characteristics and quantification of Platinum-195m SPECT. Eur. J. Nucl. Med. Mol. Imaging 44 (2017) 1347-1354.
  19. F. F. Knapp, A. Dash. Radiopharmaceuticals for Therapy. Springer, New Delhi, India, 2016.
  20. G. Mariani, L. Bodei, S. J. Adelstein, A. I. Kassis. Emerging roles for radiometabolic therapy of tumors based on auger electron emission. J. Nucl. Med.41 (9) (2000) 1519-1521.
  21. E. N. Bodnar, M. P. Dikiy, E. P. Medvedeva. Photonuclear production and antitumor effect of radioactive cisplatin (195mPt). J. Radioanalytical Nucl. Chem. 305 (2015) 133-138.
  22. R. W. Howell, K. S. Sastry, H. Z. Hill, D. V. Rao. ClS-PLATINUM-193m: its microdosimetry and potential for chemo-auger combination therapy of cancer. 4th International Radiopharmaceutical Dosimetry Symposium (1986) 493-513.
  23. J. Areberg, J. Wennerberg, A. Johnsson, K. Norrgren, S. Mattsson. Antitumor effect of radioactive cisplatin (191Pt) on nude mice. Int. J. Radiat. Oncol. Biol. Phys. 49 (3) (2001) 827-832.
  24. W. Ian. The Elements: Platinum. The Elements. Benchmark Books, 2004.
  25. http://www.nucleonica.net/unc.aspx
  26. F. F. Knapp Jr, S. Mirzadeh, A. L. Beets, M. Du. Production of therapeutic radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for applications in nuclear medicine, oncologyand interventional cardiology. J. Radioanal. Nucl. Chem.263 (2005) 503-509.
  27. K. Hilgers, H. H. Coenen, S. M. Qaim. Production of the therapeutic radionuclides 193mPt and 195mPt with high specific activity via α-particle-induced reactions on 192Os. Appl. Radiat. Isot. 66 (4) (2008) 545-551.
  28. S. Vosoughi, M. R. Aboudzadeh-Rovias, A. Rahiminezhad, F. B. Novin, K. Yousefi, Y. Sardjono. Production assessment of 195mPt in Tehran research reactor. J. Radioanal. Nucl. Chem. 332 (2023) 1-6.
  29. N. Salek, S. Vosoughi, A. Bahrami-Samani. Production calculations of 177Lu as a no carrier added radionuclide in Tehran Research Reactor. Int. J. Nucl. Energy Sci. Technol. 15 (2) (2021) 133-145.
  30. S. E. Hosseini, M. Ghannadi-Maragheh, A. Bahrami-Samani, S. Shirvani-Arani. Evaluation of promethium-147 production by irradiating natural neodymium using medium-flux Tehran research reactor. J. Radioanal. Nucl. Chem. 326 (2020) 465-474.
  31. IAEA, Evaluated Nuclear Data File (ENDF), 2020. https ://www nds. iaea.org/exfor /endf.
  32. "Raddecay" Version 3. (1999). http://rad-decay.software.informer.com.
  33. M. Sadeghi, M. R. Aboudzadeh-Rovais, N. Zandi, M. Moradi, K.Yousefi. Production assessment of non-carrier-added 199Au by (n,γ) reaction. Appl. Radiat. Isot. 154 (2019) 108877.