Dosimetric comparison of two models of 106Ru/106Rh eye plaque in brachytherapy treatment of eye melanoma using GATE Monte Carlo code

Document Type : Original Article

Authors

Faculty of Science, University of Guilan, Namjoo St, Rasht, Iran

Abstract

The use of brachytherapy using ophthalmic plaques due to their lower cost, and ease of access compared to other radiotherapy methods is widely used to treat various types of eye malignancies, especially uvea melanoma (iris, ciliary body, and choroid). Beta emitter applicators of 106Ru/106Rh, have a lot of use in brachytherapy of intraocular tumors. Treating eye melanomas using beta-emitting 106Ru/106Rh plaques in Europe and Iran is popular. Estimating the dose distribution of eye plaques according to the location of the tumor is of great importance. In this study, two 106Ru/106Rh betta emitter concave eye plaque models, CCA and CCB, manufactured by the BEBIG Eckert & Ziegler BEBIG GmbH Company, were simulated using GATE Monte Carlo simulation code. Knowledge of the exact dose distributions in tumors and each organ at risk is critical in eye plaque brachytherapy for uveal melanoma treatment. In this regard, an eye phantom includes different parts sclera, choroid, retina, cornea, vitreous, optic nerve, lens, cornea, anterior chamber, and a tumor with thickness of 3 mm and a base diameter of 10 mm, were modeled using the GATE Monte Carlo simulation code. For validation purposes, at first, the energy spectrum of the 106Ru/106Rh source used in the study was verified as an isotropic point source centered in a water phantom using beta particles with a maximum energy of 3.54 MeV. Then the plaque central axis depth dose in the eye phantom was calculated using GATE and compared with available data. Furthermore, the difference between the deposited dose in the different components of the eye phantom shows that due to its smaller dimensions, the CCA eye plaque not only causes more concentration of the dose deposition in the tumor tissue but also greatly reduces the dose reaching structures such as the lens, as a sensitive volume.

Keywords


  1. B. Damato. Treatment of primary intraocular melanoma .Expert Rev. Anticancer Ther. 6 (4) (2006) 493-506.
  2. A. D. Singh, A. Topham. Incidence of uveal melanoma in the United States: 1973–1997, Ophthalmology 110 (2003) 956-961.
  3. E. Van Limbergen, R. Pötter, P. Hoskin, D. Baltas. The GEC ESTRO Handbook of Brachytherapy. Part II Clinical Practice Version, (2019) 1-30.
  4. S. Nag, J. M. Quivey, J. D. Earle, D. Followill, J. Fontanesi, P. T. Finger, A. B. Society. The American Brachytherapy Society recommendations for brachytherapy of uveal melanomas. Int. J. Radiat. Oncol., Biol., Phys. 56 (2) (2003) 544-555.
  5. R. Rajabi, P. Taherparvar. Monte Carlo dosimetry for a new 32P brachytherapy source using FLUKA code, J Contemp Brachytherapy, 11 (1) (2019) 76-90.
  6. P. Taherparvar, Z. Fardi. Comparison between dose distribution from 103Pd, 131Cs, and 125I plaques in a real human eye model with different tumor size. Appl. Radiat. Isot. 182 (2022) 110146.
  7. N. A. Barbosa, R. DA, R. LA. Assessment of ocular beta radiation dose distribution due to 106Ru/106Rh brachytherapy applicators using MCNPX Monte Carlo code. Int. J. Cancer Thera. Oncol. 2 (3) (2014) 02038.
  8. L. Mostafa,   K. Rachid, S. M. Ahmed. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform. Phys. Med. 32 (8) (2016) 1007-1018.
  9. T. Force, E. R. Simpson, B. Gallie, N. Laperrierre, A. Beiki-Ardakani, T. Kivelä, V. Raivio, J. Heikkonen, L. Desjardins, R. Dendale, The American Brachytherapy Society consensus guidelines for plaque brachytherapy of uveal melanoma and retinoblastoma. Brachytherapy 13 (1) (2014) 1-14.
  10. W. G. Cross, C. G.  Soares, S. Vynckier, K. Weaver, Dosimetry of beta rays and low-energy photons for brachytherapy with sealed sources. ICRU Report 72 (2003).
  11. H. Jarvinen, W. Cross, C. Soares, S. Vynckier, K. Weaver. International Commission On Radiation Units And Measurements: dosimetry of beta rays and low-energy photons for brachytherapy with sealed sources, England: Oxford University (2004).
  12. S. Busoni, L. Fedeli, G. Belli, E. Genovese, V. Cannatà, C. Gori, F. Rossi. Pre and post operative radiation protection in Ru-106 brachytherapy ophthalmic plaque surgery and related material shielding properties. Phys. Med. 57 (2019) 245-250.
  13. S. Asadi, M. Vaez‐zadeh, S. F. Masoudi, F. Rahmani, C. Knaup, A.S. Meigooni. Gold nanoparticle‐based brachytherapy enhancement in choroidal melanoma using a full Monte Carlo model of the human eye. J. Appl. Clin. Med. Phys. 16 (5) (2015) 344-357.
  14. C. Thiam, V. Breton, D. Donnarieix, B. Habib, L. Maigne. Validation of a dose deposited by low-energy photons using GATE/GEANT4. Phys. Med. Biol. 53 (11) (2008) 3039.
  15. P. Taherparvar, A. Sadremomtaz. Development of GATE Monte Carlo simulation for a CsI pixelated gamma camera dedicated to high resolution animal SPECT. Australas. Phys. Eng. Sci. Med. 41 (2018) 31-39.
  16. P. Taherparvar, Z. Fardi. Development of GATE Monte Carlo Code for Simulation and Dosimetry of New I-125 Seeds in Eye Plaque Brachytherapy. Nucl. Med. Mol. Imaging 55 (2021) 86-95.
  17. Z. Fardi, P. Taherparvar. A Monte Carlo investigation of the dose distribution for new I-125 Low Dose Rate brachytherapy source in water and in different media. Pol. J. Med. Phys. Eng. 25 (1) (2019) 15-22.
  18. M. Hermida‐López. Calculation of dose distributions for 12 106Ru/106Rh ophthalmic applicator models with the PENELOPE Monte Carlo code. Med. Phys. 40 (10) (2013) 101705.