Shielding design and analysis of the lead and hot cells used to produce radioisotope

Document Type : Original Article

Authors

1 Department of Physics, Faculty of Science, Arak University, Iran

2 Nuclear Science and Technology Research Institute (NSTRI)

Abstract

Lead and hot cell equipment are needed to perform radiochemical processes to extract the desired radioisotope from the hot target. The proper design and shielding of this equipment are important to reduce the radiation exposure of employees. In this article, based on the gamma rays emitted from the hot target used in the molybdenum-99 production process, the calculations related to the design of a suitable shield for a chamber with specific dimensions made of Barite Concrete to make a hot cell or made of Lead to make a lead cell, has been done. The simulation results with MCNP6.2 Monte Carlo code show that the shield thickness to limit the dose rate to 10 µSv/h, for making hot cell or lead cells equals 90 cm and 24 cm, respectively.

Keywords


  1. G. F. Knoll. Radiation detection and measurement. 4th ed., John Wiley & Sons, New York, 2010.
  2. A. B. Chilton, J. K. Shultis, and R. E. Faw. Principles of radiation shielding. Prentice Hall Inc, Old Tappan, NJ (USA), 1984.
  3. I. A. E. Agency. Manual on safety aspects of the design and equipment of hot laboratories. Safety series No. 30. IAEA, Vienna, 1969.
  4. M. H. Bahrin, H. Hasan, A. A. Rahman, M. Hamzah, M. Z. Hassan, M. Rizal M. Ibrahim, M. H. Rabir, J. A. Karim. The design of a Hot Cell with interlocking concrete wall. IOP Conf. Ser.: Mater. Sci. Eng. 555 (1) (2019) 012019
  5. S. Sipaun. Thorium fueled reactor. AIP Conf. 1799 (1) (2017) 050012.
  6. S. Kurien,V. Anandaraj, T. Ulaganathan, T. Johny, Jojo Joseph, S. Venugopal, T. Jayakumar. Design & development of a machine for dimensional measurement-cum-dismantling of irradiated fuel subassemblies. Procedia Eng. 64 (2013)1572-1581.
  7. T. Zhang, S. Li, W. Zhang. Design of Power Manipulator for Hot Cell Facility. 2021 IEEE Int. Conf. Robotics Biomimetics (ROBIO), Sanya, China (2021) 458-462.
  8. F. B. Larsen. Manual on safety aspects of the design and equipment of hot laboratories. Safety series No. 30. IAEA, Vienna, 1969.
  9. H. Glen, A general purpose alpha-gamma hot laboratory. Nucl. Struct. Eng. 1 (1) (1965) 98-107,.
  10. M. Durazzo, J. A. B. Souza, R. F. Ianelli, E. M. Takara, J. S. Garcia Neto, A. M. Saliba-Silva, E. F. Urano de Carvalho. Manufacturing LEU-foil annular target in Brazil, Ann. Nucl. Energy 165 (2022) 108646.
  11. R. S. Detwiler, R. J. McConn, T. F. Grimes, S. A. Upton, E. J. Engel.Compendium of material composition data for radiation transport modeling, Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2021.
  12. ASTM, Standard specification for aggregates for radiation-shielding concrete, 2009.
  13. A. Laptev, O.N. Belooussova, C.J. Bianconi, M.A. Griffin, P.S. Hoover, B.T. Keller, G.R. Murrell, R.T. Perry, Jr. Photon and neutron fluence-to-dose conversion factors for external radiation: A comparison of the new ICRP DCFs with those currently in use at LANL-paper 10. American Nuclear Society-ANS, USA, 2014.
  14. R. Vishwakarma, P. Subrahmanyam, G. J. B. o. R. P. Venkataraman, Implementation of the recommendations of ICRP-60 dose limits in industrial radiography practice, Bull. Radiat. Prot. 15(1) (1992) 1-2.