Determining the received dose of the organs in mammography energy spectra with GATE code and images quality evaluation

Document Type : Original Article

Authors

Physics Department, Shahroud University of Technology, Semnan, Iran

Abstract

One of the best methods for detecting breast cancer, especially in its early stages, is X-ray mammography. However, few studies have examined the risk of developing cancer in tissues other than the breast. The aim of the current study is to determine the absorbed dose in sensitive body organs during mammography. Simulation was performed using the GATE code. In the first step, an X-ray tube was created to produce suitable energy spectra for mammography. Then, a quality control phantom was designed to assess image quality, including spatial resolution and contrast-to-noise ratio (CNR). An adult ORNL phantom with different organs was designed, and the geometry of a digital mammography device was simulated in two main mammography views (CC and MLO) to calculate the dose in the organs. Finally, it was found that the radiation dose to body tissues such as the uterus, which is outside the primary X-ray field, is low (on average 0.022 μGy). However, the highest dose is received by the contralateral breast, about 2735.5 μGy, in the lungs about 48.9 μGy, in the heart about 7.6 μGy and in the stomach about 5.8 μGy after the examined breast and tumor. Based on the results, in our study, the energy of 25 keV is introduced as the optimal energy.

Keywords


  1. J. Lu, P. S. Steeg, J. E. Price, S. Krishnamurthy, S. A. Mani, J. Reuben, M. Cristofanilli, G. Dontu, L. Bidaut, V. Valero, G. N. Hortobagyi, D. Yu. Breast cancer metastasis: challenges and opportunities. Cancer Res. 69 (12) (2009) 4951–4953.
  2. S. J. S. Gardezi, A. Elazab, B. Lei, T. Wang. Breast cancer detection and diagnosis using mammographic data: Systematic review. J. Med. Internet Res. 21 (7) (2019) e14464.
  3. J. Harbin. Cancer facts & figures 2022. ACS Atlanta (2022) pp. 10-12.
  4. M. R. Yahyaei, M.R. Shojaei, A.R. Khorasanchi, S. Aghayan. Estimating the Staff Exposure dose to radiation from patients undergoing myocardial perfusion imaging with 99mTc-MIBI. J. Maz. Univ. Med. Sci. 26 (141) (2016) 149–154.
  5. O. Alonzo-Proulx, N. Packard, J. M. Boone, A. Al-Mayah, K. K. Brock, S. Z. Shen, M. J. Yaffe. Validation of a method for measuring the volumetric breast density from digital mammograms. Phys. Med. Biol. 55 (2010) 3027–44.
  6. A. Mohammadi. Absorbed dose assessment of critical organs in mammography. M.Sc. Thesis, University of Shiraz, (2005), 96pp.
  7. A. Bloomquist, H. Bosmans, A. Burch, M. Chevalier, K. Daros, G. Gennaro, J. Heggie, R. Jong, G. Mawdsley, I. D. McLean, P. Mora, N. Pongnapang, R. Rajapakshe, M. Rehani, M. Rickard, M. Yaffe, K. Young. Quality assurance programme for digital mammography. IAEA human health series no. 17. Vienna: IAEA, 2011.
  8. A. Barrett, J. Dobbs, S. Morris, T. Roques. Rradiotherapy planning. 4th ed. CRC Press, London, 2009.
  9. T. Berris, M. Mazonakis, J. Stratakis, A. Tzedakis, A. Fasoulaki, J. Damilakis. Calculation of organ doses from breast cancer radiotherapy: a monte carlo study. J. Appl. Clin. Med. Phys. 14 (1) (2013) 133–146.
  10. J. Huang, W.J. Mackillop. Increased risk of soft tissue sarcoma after radiotherapy in women with breast carcinoma. Cancer 92 (1) (2001) 172–180.
  11. Y. M. Kirova, Y. De Rycke, L. Gambotti, J. -Y. Pierga, B. Asselain, A. Fourquet. Second malignancies after breast cancer: the impact of different treatment modalities. Br. J. Cancer. 98 (5) (2008) 870–874.
  12. Protection, Radiological. ICRP publication 103. ICRP 37 (2.4) (2007) 2.
  13. H. Mohammadi, M. R. Shojaei, J. Soltani-Nabipour. Investigating the effect of voltage fluctuations on the beam quality of X-rays in the range energy of diagnostic radiology. Int. J. Res. Sci. Manag. 8 (4) (2020) 261–266.
  14. S. A. E. Mohamed. Patient radiation dose during mammography procedures. M.Sc. Thesis, Sudan Acad. Sci. (2015) 110pp.
  15. Geant4 Application for Tomographic Emission. Availableat: http://www.opengatecollaboration.org
  16. S. Jan, G. Santin, D. Strul, S. Staelens, K. Assié, D. Autret, S. Avner, R. Barbier, M. Bardiès, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P. F. Honore, S. Kerhoas-Cavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J. M. Vieira, D. Visvikis, R. Van de Walle, E. Wieërs, C. Morel. Gate: a simulation toolkit for pet and spect. Phys. Med. Biol. 49 (19) (2004) 4543.
  17. D. A. B. Bonifácio, H. M. Murata, M. Moralles. Monte carlo simulation of xray spectra in diagnostic radiology and mammography using geant4. 49 (21) (2005) 4897-917.
  18. A. A. moulavi. Xray spectra calculation for different targetfilter of mammograms using mcnp code. Int. J. Radiat. Res. 3 (3) (2005) 129-133.
  19. U. W. E. Pietrzyk, A. H. Zakhnini, M. Axer, S. Sauerzapf, D. Benoit, M. Gaens. Edugate–basic examples for educative purpose using the gate simulation platform. Z. Med. Phys. 23 (1) (2013) 65–70.
  20. H. Mohammadi, M. R. Shojaei, J. Soltani-Nabipour. Simulation of slotscan imaging system with gate and images quality evaluation. Iran. J. Phys. Res. 21 (3) (2021) 471–478.
  21. F. Pernicka, I. D. McLean. IAEA. Dosimetry in diagnostic radiology: an internacional code of practice. Tech. Rep. Ser. 457 (2007) pp. 1–359.
  22. M. Cristy. Mathematical phantoms for use in reassessment of radiation doses to japanese atomicbomb survivors. tech. rep. Oak Ridge Nat. Lab. 17 (1) (1985) 55.
  23. S. J. Chang, S. Y. Hung, Y. L. Liu, S. H. Jiang. Construction of taiwanese adult reference phantoms for internal dose evaluation. PloS one 11 (9) (2016) e0162359.
  24. M. E. Myronakis, M. Zvelebil, D. G. Darambara, Normalized mean glandular dose computation from mammography using gate: a validation study. Phys. Med. Biol. 58 (7) (2013) 2247.
  25. R. L. Maughan, P. J. Chuba, A. T. Porter, E. BenJosef, D. R. Lucas. The elemental composition of tumors: Kerma data for neutrons. Med. Phys. 24 (8) (1997) 1241–1244.
  26. A. Mira, A. Carton, S. Muller, Y. Payan. A biomechanical breast model evaluated with respect to mri data collected in three different positions. Clin. Biomech. 60 (2018) 191–199.
  27. Image Processing and Analysis in Java. Available at: http://rsbweb.nih.gov/ij
  28. A. Rose. Vision: Human and electronic. in Applied Solid State Physics, Plenum Press: New York, NY, USA, 1970; pp. 79–160.
  29. A. D. Wrixon. New ICRP recommendations. J. Radiol. Prot. 28 (2) (2008) 161.
  30. R. Safitri, L. Miska, E. Yusibani. Simulation on the emergence of metastases in breast cancer radiotherapy patients using monte carlo N-particle (mcnp). AIP. Conf. Proc. 2346 (1) (2021) 050004.
  31. R. M. Ali, A. England, M. F. McEntee, P. Hogg. A method for calculating effective lifetime risk of radiationinduced cancer from screening mammography. Radiography 21 (4) (2015) 298–303.
  32. I. Sechopoulos, S. Suryanarayanan, S. Vedantham, C. J. D’Orsi, A. Karellas. Radiation dose to organs and tissues from mammography: Monte carlo and phantom study. Radiology 246 (2) (2008) 434–443.