Calculation of Specific Absorbed Fraction and S Factor for internal dosimetry of 177Lu in Zubal phantom using GATE Monte Carlo code

Document Type : Original Article

Authors

1 Department of Radiation Medical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran

3 Medical Physics Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

4 Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran.

Abstract

Specific absorbed fraction is one of the important parameters for estimating the internal dose. In this paper, the specific absorbed fraction for a number of body organs has been calculated using the Zubal Voxel phantom. The GATE Monte Carlo code version 7.2 was used to simulate the single-energy photons and electrons related to the radioactive isotope 177Lu. kidney, liver, and spleen were considered as source organs in this simulation and the specific absorbed fractions of these source organs were compared with the values ​​obtained from previous studies. The most relative difference between the values of this study and previous studies was observed to be 41% and related to the photons with the energy of 71 keV when the spleen and liver were considered as the source and target organs, respectively. In most data, discrepancies are acceptable and the obtained data are consistent with the previous data and have been verified. Using the data obtained from this study, the S-factors used for dosimetric calculations in the MIRD method were calculated and presented.

Keywords


 1. I. G. Zubal, C. R. Harrell, E. Q. Smith, Z. Rattner, G. Gindi, P. B. Hoffer. Computerized threedimensiona segmented human anatomy. Med. Phys. 21 (1994) 299-302.
2. R. G. Dale, Dose-rate effects in targeted radiotherapy. Phys. Med. Biol. 41 (10) (1996) 1871-1884.
3. S. Agostinelli, J. Allison, K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, F. Behner, L. Bellagamba, J. Boudreau, L. Broglia, A. Brunengo, H. Burkhardt, S. Chauvie, J. Chuma, R. Chytracek, G. Cooperman, G. Cosmo, P. Degtyarenko, A. Dell'Acqua, G. Depaola, D. Dietrich, R. Enami, A. Feliciello, C. Ferguson, H. Fesefeldt, G. Folger, F. Foppiano, A. Forti, S. Garelli, S. Giani, R. Giannitrapani, D. Gibin, J.J. Gómez Cadenas, I. González, G. Gracia Abril, G. Greeniaus, W. Greiner, V. Grichine, A. Grossheim, S. Guatelli, P. Gumplinger, R. Hamatsu, K. Hashimoto, H. Hasui, A. Heikkinen, A. Howard, V. Ivanchenko, A. Johnson, F.W. Jones, J. Kallenbach, N. Kanaya, M. Kawabata, Y. Kawabata, M. Kawaguti, S. Kelner, P. Kent, A. Kimura, T. Kodama, R. Kokoulin, M. Kossov, H. Kurashige, E. Lamanna, T. Lampén, V. Lara, V. Lefebure, F. Lei, M. Liendl, W. Lockman, F. Longo, S. Magni, M. Maire, E. Medernach, K. Minamimoto, P. Mora de Freitas, Y. Morita, K. Murakami, M. Nagamatu, R. Nartal. Geant4-a simulation toolkit.Nucl. Instrum. Methods Phys. Res. A. 506 (2003) 250-303.
4.
S. Jan, G. Santin, D. Strul, S. Staelens, K. Assie, D. Autret, S. Avner, R. Barbier, M. Bardies, P. M. Bloomfield, D. Brasse, V. Breton, P. Bruyndonckx, I. Buvat, A. F. Chatziioannou, Y. Choi, Y. H. Chung, C. Comtat, D. Donnarieix, L. Ferrer, S. J. Glick, C. J. Groiselle, D. Guez, P.-F. Honore, S. KerhoasCavata, A. S. Kirov, V. Kohli, M. Koole, M. Krieguer, D. J. van der Laan, F. Lamare, G. Largeron, C. Lartizien, D. Lazaro, M. C. Maas, L. Maigne, F. Mayet, F. Melot, C. Merheb, E. Pennacchio, J. Perez, U. Pietrzyk, F. R. Rannou, M. Rey, D. R. Schaart, C. R. Schmidtlein, L. Simon, T. Y. Song, J.-M. Vieira, D. Visvikis, R. Van de Walle, E. Wieers, C. Morel. GATE: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49 (2004) 4543–4561.
5. D. Visvikis, M. Bardies, S. Chiavassa, C. Danford, A. Kirov, F. Lamare, L. Maigne, S. Staelens, R. Taschereau. Use of the GATE Monte Carlo package for dosimetry applications. Nucl. Instrum. Methods A. 569 (2006) 335‑340.
6. K. Assié, I. Gardin, P. Véra, I. Buvat. Validation of the Monte Carlo simulator GATE for indium111 imaging. Phys. Med. Biol. 50 (2005) 3113‑3125.
7. C. O. Thiam, V. Breton, D. Donnarieix, B. Habib, L. Maigne, Validation of a dose deposited by lowenergy photons using GATE/GEANT4. Phys. Med. Biol. 53 (2008) 3039‑3055.
8. R. Loevinger, T. F. Budinger, E. E. Watson. MIRD Primer for Absorbeded Dose Calculations. Society of Nuclear Medicine, New York, 1988.
9. W. E. Bolch, K. F. Eckerman, G. Sgouros, Thomas SR. MIRD pamphlet No 21: A generalized schema for radiopharmaceutical dosimetry– standardization of nomenclature. J. Nucl. Med. 50 (2009) 477‑484.
10.
ICRP 89 Adult Male https://www.doseinfo-radar.com/RADARphan.html.
11. M. Chauvin, D. Borys, F. Botta, P. Bzowski, J. Dabin, A. M Denis-Bacelar, A. Desbrée, N. Falzone, B. Q. Lee, A. Mairani, Alessandra Malaroda, G. Mathieu, E. McKay, E. Mora-Ramirez, A. P. Robinson, D. Sarrut, L. Struelens, A. Vergara Gil, M. Bardiès. OpenDose: Open-Access Resource for Nuclear Medicine Dosimetry. J. Nucl. Med. 61 (10) (2020) 1514
-1519.
12.
G. Santin, D. Strul, D. Lazaro, L. Simon, M. Krieguer, M. Vieira, V. Breton, C. Morel. GATE: a Geant4-based simulation platform for PET, SPECT integrating movement and time management IEEE Trans. Nucl. Sci. 50 (2003) 1516-1521.