Manufacturing and applying an UAV equipped with a gamma detection system for fast radiation mapping and finding weak radioactive hotspots

Document Type : Original Article

Authors

Radiation Applications Research School, Nuclear Science & Technology Research Institute, Tehran, Iran

Abstract

This radiological monitoring system consisting of a 2-inch NaI(Tl) crystal coupled to a PM tube and mounted on a multi-rotor UAV has been developed to fast detect radioactive sources. To assess its performance, a set of experiments for the detection of low-level Co-60 and Cs-137 point sources in a soccer field was performed. Then, the radiological map was made and then fused with the geographical one using image processing techniques. The results show that at 50 cm, all 5-point sources were successfully identified in their actual locations. By decreasing the flight height, the ability of the drone-based radiological monitor in recognizing radioactive sources significantly increases. The results confirmed that the drone system with the scintillation detector enabled the accurately identifying radiological anomalies by surveying a contaminated area.

Keywords


1. V. F. Kozlov, Handbook on Radiation Safety. The fourth edition. Moscow. Energoatomizdat, 1991 (in. Russian).
2. A. Blowers. Nuclear waste and landscapes of risk. Landsc. Res. 24 (3) (1999) 241-264.
3. D. C. W. Sanderson, J. D. Allyson. An aerial gamma ray search for a missing 137Cs source in the Niger Delta. 1991.
4. R. Pöllänen, H. Toivonen, K. Peräjärvi, T. Karhunen, P. Smolander, T. Ilander, K. Rintala, T. Katajainen, J. Niemelä, M. Juusela. Performance of an air sampler and a gamma-ray detector in a small unmanned aerial vehicle. J. Radioanal. Nucl. Chem. 282 (2009) 433-437.
5. S. Mochizuki, J. Kataoka, L. Tagawa, Y. Iwamoto, H. Okochi, N. Katsumi, S. Kinno, M. Arimoto, T. Maruhashi, K. Fujieda, T. Kurihara, S. Ohsuka. First demonstration of aerial gamma-ray imaging using drone for prompt radiation survey in Fukushima. J. Instrum.12 (2017)11014.
6. S. I. Okuyama, T. Torii, A. Suzuki, M. Shibuya, N. Miyazaki. A remote radiation monitoring system using an autonomous unmanned helicopter for nuclear emergencies. J. Nucl. Sci. Technol. 45 (2008) 414-416.
7. B. Li, Y. Zhu, Z. Wang, C. Li, Z. -R. Peng, L. Ge. Use of multi-rotor unmanned aerial vehicles for radioactive source search. Remote Sens. 10 (2018) 728.
8. J. Aleotti, G. Micconi, S. Caselli, G. Benassi, N. Zambelli, M. Bettelli, D. Calestani, A. Zappettini. Haptic teleoperation of UAV Equipped with gamma-ray spectrometer for detection and identification of radio-active materials in industrial plants. T. Tolio, G. Copani, W. Terkaj (Eds.), Factories of the Future: the Italian Flagship Initiative, Springer International Publishing, Cham (2019) 197-214.
9. G. Micconi, J. Aleotti, S. Caselli. Evaluation of a haptic interface for UAV teleoperation in detection of radiation sources. In 2016 18th Mediterranean Electrotechnical Conference (MELECON) (2016).
10. J. Aleotti, G. Micconi, S. Caselli, G. Benassi, N. Zambelli, M. Bettelli, A. Zappettini, Detection of nuclear sources by UAV teleoperation using a visuo-haptic augmented reality interface. Sensors 17 (2017) 2234.
11. C. Kunze, B. Preugschat, R. Arndt, F. Kandzia, B. Wiens, S. Altfelder. Development of a UAV-based gamma spectrometry system for natural radionuclides and field tests at central Asian Uranium legacy sites. Remote Sens. 14 (2022) 2147.
12. O. Šálek, M. Matolín, L. Gryc. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry. J. Environ. Radioact. 182 (2018) 101-107.
13. A. A. R. Newaz, S. Jeong, H. Lee, H. Ryu, N. Y. Chong. UAV-based multiple source localization and contour mapping of radiation fields. Rob. Auton. Syst. 85 (2016) 12-25.
14. P. Gong, X. -B. Tang, X. Huang, P. Wang, L. -S. Wen, X. -X. Zhu, C. Zhou. Locating lost radioactive sources using a UAV radiation monitoring system. Appl. Radiat. Isot. 150 (2019) 1-13.
15. S. van der Veeke, J. Limburg, R. L. Koomans, M. Söderström, E. R. van der Graa. Optimizing gamma-ray spectrometers for UAV-borne surveys with geophysical applications. J. Environ. Radioact. 237 (2021) 106717.
16. X. -B. Tang, J. Meng, P. Wang, Y. Cao, X. Huang, L. -S. Wen, D. Chen. Efficiency calibration and minimum detectable activity concentration of a real-time UAV airborne sensor system with two gamma spectrometers. Appl. Radiat. Isot. 110 (2016) 100-108.
17. F. M. Van Egmond, S. Van Der Veeke, M. Knotters, R. L. Koomans, J. Limburg. Mapping soil texture with a gammaray spectrometer: comparison between UAV and proximal measurements and traditional sampling: validation study. No. 137. Statutory Research Tasks Unit for Nature & the Environment (2018).
18. H. Ardiny, A. Beigzadeh. Pre-flight experiments for the unmanned aerial monitoring system (UAMS) radioactive detection under its limitations. J. Nucl. Res Appl. (online access 2022).
19. H. Ardiny, M. Askari, A. M. Beigzadeh. Detection and localization of mobile and weak radioactive sources by datafusion of a surveillance camera and a NaI detector in the continuous and discontinuous modes. J. Nucl. Sci. Technol. 43 (3) (2022) 94-102.