PAKAG polymer gel dosimeter evaluation using optical readout technique in UV region: Dose-response curve and the effect of post-irradiation time

Document Type : Original Article

Authors

Department of Physics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

Abstract

Various imaging techniques have been used for the readout of the polymer gel dosimeters. Due to limitations in imaging modalities such as Magnetic resonance imaging and X-ray CT, the optical technique was suggested as a precise and practical alternative for evaluating the gel dosimeters parameters. This study aimed to investigate the optical response of the PAKAG polymer gel dosimeter. To this aim, the PAKAG polymer gel dosimeter was produced in Imam Khomeini International University (IKIU) gel dosimetry laboratory. A clinical linear accelerator system with 6 MeV energy was used for irradiating. The absorbance as a function of wavelength was obtained using a UV-Vis spectrometer to read out the irradiated gel dosimeters. Results showed that the sensitivity of 0.11 Au.Gy‑1 was acquired at a wavelength of 340 nm. Evaluation of the post-irradiation time effects showed that the gel dosimeter's sensitivity was stabilized for post-irradiation times beyond 24h. Results confirmed the UV-Vis readout technique as an appropriate method for evaluating the PAKAG polymer gel dosimeter's response.

Keywords


1.J. C. Gore, Y. S. Kang. Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys. Med. Biol. 29 (10) (1984) 1189.
2. G. S. Ibbote. Clinical applications of gel dosimeters. Journal of Physics: Conference Series. 56 (1) (2006) 108-3.
3. J. Izewska, and G. Rajan. Radiation dosimeters. Radiation oncology physics: a handbook for teachers and students (2005) 71-99.
4. B. Farhood, G. Geraily, and S. M. M. Abtahi. A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Applied Radiation and Isotopes. 143 (2019) 47-59.
5. M. Mcjury, M. Oldham, V. Cosgrove, P. Murphy, S. Doran, M. Leach, S. Webb. Radiation dosimetry using polymer gels: methods and applications. The British Journal of Radiology. 73 (873) (2000) 919-929.
6. Y. -L. Chen, B. -T. Hsieh, C. -M. Chiang, C. -T. Shih, K. -Y. Cheng, L. -L.Hsieh. Dose verification of a clinical intensitymodulated radiation therapy eye case by the magnetic resonance imaging of N-isopropylacrylamide gel dosimeters. Radiat. Phys. Chem. 104 (2014) 188-191.
7. M. Silveira, J. F. Pavoni, O. Baffa. Three- dimensional quality assurance of IMRT prostate plans using gel dosimetry. Physica Medica. 34 (2017) 1-6.
8. G. Ibbott, M. Maryanski, R. Avison, J. Gore. Investigation of a BANG polymer gel dosimeter for use as a mailed QA device. Med. Phys. 22 (1995) 951.
9. A. Rashidi, S. M. M. Abtahi, E. Saeedzadeh, M. E. Akbari. A new formulation of polymer gel dosimeter with reduced toxicity: Dosimetric characteristics and radiological properties. Zeitschrift für Medizinische Physik. 30 (3) (2020) 185-193.
10. S. M. M. Abtahi, M. Pourghanbari. A new less toxic polymer gel dosimeter: Radiological characteristics and dosimetry properties. Physica Medica. 53 (2018) 137-144.
11. M. Kozicki, M. Jaszczak, P. Maras, M. Dudek, M. Cłapa. On the development of a VIPAR ndradiotherapy 3D polymer gel dosimeter. Phys. Med. Biol
. 62 (2017) 986-1008.
12. C. Matrosic, A. McMillan, J. Holmes, B. Bednarz, W. Culberson. Dosimetric comparison of DEFGEL and PAGAT formulae paired with an MRI acquisition. J. Phys.: Conf. Series 847 (2017).
13. G. Ibbott, M. Maryanski, R. Schulz, J. Gore. Stereotactic radiosurgery simulation using MRI and a polymer gel dosimeter. Med. Phys. 20 (1993).
14. S. M. Abtahi, S. Aghamiri, H. Khalafi. Optical and MRI investigations of an optimized acrylamide- based polymer gel dosimeter. J. Radioanal. Nucl. Chem. 300 (1) (2014) 287-301.
14. M. Maryanski, Y. Zastavker, J. Gore. Radiation dose distributions in three dimensions from tomographic optical density
scanning of polymer gels: II. Optical properties of the BANG polymer gel. Phys. Med. Biol. 41 (1996) 2705-2717.
15. E. B. Podgorsak. Radiation physics for medical physicists. Berlin: Springer, 2006.
16. Y. De Deene, R. Van de Walle, E. Achten, and C. De Wagter. Mathematical analysis and experimental investigation of
noise in quantitative magnetic resonance imaging applied in polymer gel dosimetry. Signal Processing. 70 (2) (1998) 85-101.
17. A. D. McNaught, and A. Wilkinson. IUPAC Compendium of Chemical Terminology. 2nd edn. (the “Gold Book”) Blackwell Scientific Publications, 1997.
18. GE Health Care. ÄKTA Laboratory-Scale Chromatography Systems-Instrument Management Handbook. GE Healthcare Bio-Sciences AB, Uppsala, 2015.
19. C. Baldock, Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K. B. McAuley, M Oldham, L. J. Schreiner. Polymer gel dosimetry. Phys. Med. Biol. 55 (5) (2010) R1-63.
20. C. Baldock, M. Lepage, S. A. Bäck, P. J. Murry, P. M. Jayasekera, D. Porter, T. Kron. Dose resolution in radiotherapy polymer gel dosimetry: effect of echo spacing in MRI pulse sequence. Phys. Med. Biol. 46 (2) (2001) 449.
21.
https://www.sigmaaldrich.com/IR/en/product/sigma/c5416
22. P. Joaquim. Marques de Sá, Applied Statistics Using SPSS, STATISTICA, MATLAB and R. 2nd ed. New York: Springer, 2007.
23. B. Farhood, S. M. M. Abtahi, G. Geraily, M. Ghorbani, S. R. Mahdavi, M. H. Zahmatkesh. Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity. Radiat. Phys. Chem. 147 (2018) 91-100.
24. Y. De Deene, A. Venning, C. Hurley, B. J. Healy, C. Baldock. Dose- response stability and integrity of the dose distribution of various polymer gel dosimeters. Phys. Med. Biol. 47 (14) (2002) 2459.
25. A. Venning, B. Hill, S. Brindha, B. J. Healy, C. Baldock. Investigation of the PAGAT polymer gel dosimeter using magnetic resonance imaging. Phys. Med. Biol. 50 (16) (2005) 3875.

26. S. M. M. Abtahi, H. S. Abandansari. Polymer gel dosimeters with PVA-GA matrix. Australasian Phys. Eng. Sci. Med. 40 (3) (2017) 651-658.
27. Y. De Deene. Essential characteristics of polymer gel dosimeters. J. Phys.: Conf. Series, 2004.
28. C. Hurley, A.Venning, C. Baldock. A study of a normoxic polymer gel dosimeter comprising methacrylic acid, gelatin and tetrakis (hydroxymethyl) phosphonium chloride (MAGAT). Appl. Radiat. Isot. 63 (4) (2005) 443-456.
29. Y. De Deene, K. Vergote, C. Claeys, C. De Wagter. The fundamental radiation properties of normoxic polymer gel dosimeters: a comparison between a methacrylic acid based gel and acrylamide based gels. Phys. Med. Biol. 51 (2006)
653-673.
30. S. M. M. Abtahi, M. Zahmatkesh, H. Khalafi. Investigation of an improved MAA-based polymer gel for thermal neutron
dosimetry. J. Radioanal. Nucl. Chem. 307 (2) (2016) 919-929.
31. J. V. Trapp, S. A. Bäck, M. Lepage, G. Michael, C. Baldock. An experimental study of the dose response of polymer gel dosimeters imaged with x-ray computed tomography. Phys. Med. Biol. 46 (11) (2001) 2939.
32. M. Khadem-Abolfazli, M. Mahdavi, S. R. M. Mahdavi, G. Ataei. Dose enhancement effect of gold nanoparticles on MAGICA polymer gel in mega voltage radiation therapy. Int. J. Radiat. Res. 11 (1) (2013) 55. Radioanal. Nucl. Chem. 307 (2) (2016) 919-929.