Investigation of the ability to use IRF series power MOSFETs as gamma-ray dosimeters

Document Type : Original Article

Authors

1 Department of Nuclear Physics, University of Tabriz, Tabriz, Iran

2 Research Institute for Applied Physics and Astronomy, Department of Radiation Applications, University of Tabriz, Tabriz, Iran

3 Department of Physics, Payame Noor University, Tehran, Iran

Abstract

In this paper, the ability of using IRF series power MOSFETs as gamma ray dosimeters was investigated. For this purpose, the threshold voltage shift generated by gamma ray radiation and the fading characteristics at room temperature, as the two main characteristics of the ideal dosimeter, for three types of power MOSFETs with a drain-source on resistance (RDS(on)) greater than 1Ω was measured and compared. Cobalt-60 source was used for irradiation at radiation dose in the range of 1-100krad with a dose rate of 10krad/h. The results show that the threshold voltage shift relative to the radiation dose has a good linearity for all three types of MOSFETs. Also, MOSFET with higher RDS(on) is more sensitive to gamma radiation. The fading characteristics for all three types of MOSFETs in the six-month period is less than 1%. Therefore, inexpensive IRF series MOSFETs are good candidates for gamma ray dosimetry.

Keywords


1. A. Holmes-Siedle. The space-charge dosimeter: General principles of a new method of radiation detection. Nuclear Instruments and Methods. 121 (1) (1974) 169-179.
2. A. Holmes-Siedle, L. Adams. RADFET: A review of the use of metal-oxide-silicon devices as integrating dosimeters. International Journal of Radiation Applications and Instrumentation. Part C. Radiation Phys. Chem. 28 (2) (1986) 235-244.
3. A. Kelleher, N. McDonnell, B. O'Neill, W. Lane, L. Adams. The effect of gate-oxide process variations on the long-term fading of PMOS dosimeters. Sensors and Actuators A: Physical. 37 (1993) 370-374.
4. D. J. Gladstone, X. Q. Lu, J. L. Humm, H. F. Bowman, L. M. Chin. A miniature MOSFET radiation dosimeter probe. Med. Phys. 21 (11) (1994) 1721-1728.
5. G. S. Ristić, Thermal and UV annealing of irradiated pMOS dosimetric transistors. J. Phys. D: Appl. Phys. 42 (13) (2009) 135101.
6. G. Ristić, S. Golubović, M. Pejović
. pMOS transistors for dosimetric application. Electronics Letters 29 (18) (1993) 1644-1646.
7. S. Pejovic, P. Bosnjakovic, O. Ciraj-Bjelac, M. M. Pejovic. Characteristics of a pMOSFET suitable for use in radiotherapy. Appl. Radiat. Isot. 77 (2013) 44-49.
8. S. Ashrafi, B. Eslami. Investigation of sensitivity and threshold voltage shift of commercial MOSFETs in gamma irradiation. Nucl. Sci. Technol. 27 (2016) 144-150
.
9. G. Ristić, S. Golubović, M. Pejović. Sensitivity and fading of pMOS dosimeters with thick gate oxide. Sensors and Actuators A: Physical, 51 (2-3) (1995) 153-158.
10. G. Ensell, A. Holmes-Siedle, L. Adams. Thick oxide pMOSFET dosimeters for high energy radiation, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 269 (3) (1988) 655-658.
11. A. Kelleher, W. Lane, L. Adams. A design solution to increasing the sensitivity of pMOS dosimeters: The stacked RADFET approach. IEEE Trans. Nucl. Sci. 42 (1) (1995) 48-51.
12. B. O'Connell, A. Kelleher, W. Lane, L. Adams. Stacked RADFETs for increased radiation sensitivity. In Proceedings of the Third European Conference on Radiation and its Effects on Components and Systems (pp.
481-486). IEEE, (1995, September).
13. A. Jaksic, G. Ristic, M. Pejovic, A. Mohammadzadeh, C. Sudre, W. Lane. Gamma-ray irradiation and postirradiation responses of high dose range RADFETs, IEEE Trans. Nucl. Sci. 49 (3) (2002) 1356-1363.
14. M. M. Pejović, M. M. Pejović, A. B. Jakšić
. Radiation-sensitive field effect transistor response to gamma-ray irradiation. Nucl. Tech. Radiat. Protec. 26 (1) (2011) 25-31.
15. D. A. Grant, J. Gowar. Power MOSFETS: Theory and Applications. Wiley-Interscience. New York (1989).
16. N. H. Lee, J. W. Cho, S. H. Kim, G. U. Youk. Development of electronic radiation dosimeter using commercial power Pmosfet. J. Nucl. Sci. Tech. 37 (sup1) (2000) 803-807.
17. J. Barthe. Electronic dosimeters based on solid state detectors. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184 (1-2) (2001) 158-189.
18. C. Conneely, and et al., Strategies for millirad sensitivity in PMOS dosimeters, In RADECS 97. Fourth European Conference on Radiation and its Effects on Components and Systems (Cat. No. 97TH8294) (pp. 288-293). IEEE, (1997, September).
19. A. Lelis, H. E. Boesch, T. R. Oldham, F. B. McLean. Reversibility of trapped hole annealing. IEEE Tran. Nucl. Sci. 35 (6) (1998) 1186-1191.
20. K. Terada, K. Nishiyama, K. -I. Hatanaka. Comparison of MOSFET-threshold-voltage extraction methods. Solid-state Electronics 45 (1) (2001) 35-40.
21. J. J. Liou, A. Ortiz-Condez, F. G. Sanchez. Extraction of the threshold voltage of MOSFETs: an overview. In 1997 IEEE Hong Kong Proceedings Electron Devices Meeting (pp. 31-38). IEEE, (1997, August).
22. A. Ortiz-Conde, F. J. García-Sánchez, J. J. Liou. An overview on parameter extraction in field effect transistors. Acta Científica Venezolana 51 (3) (2000) 176-187.