Estimation of the absorbed dose of 99mTc-MAX in human based on the biological distribution of balb/c mice by MIRD method

Document Type : Original Article

Authors

1 Medical Radiation, Nuclear Engineering, Shahid Beheshti, Tehran- Iran

2 Radiation Application Research School, Nuclear Science & Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran

Abstract

Ionizing radiation collides with biological systems, inflicting ionization and excitation of atoms and molecules, developing abnormal and harmful products with inside the biological environment. Estimation of absorption dose is of particular significance in evaluating the medical and biological effects related to ionizing radiation from radiopharmaceuticals. Therefore, the aim of this study was to evaluate the absorbed dose of human body organs resulting from the novel 99mTc-MAX labeled compound based on studies of the biodistribution of balb/c mice. The designed ligand with chelating properties was synthesized by the reaction between the two substances Chloroacetamide and Xanthate with certain molar ratios. Then, the labeling process was performed successfully with 99mTc and with 93% radiochemical purity in the laboratory and 90% in the presence of human blood serum. The biodistribution of the labeled complex in balb/c mice up to 24 hours after injection was then examined. MIRD method was used to estimate the absorbed dose in human organs. The results indicate the highest absorbed dose of the complex in the liver with 0.0011mGy / MBq. The 99mTc-MAX can be a potentially effective imaging agent due to its significant hepatic uptake as well as its proper accumulation in the reticuloendothelial system.

Keywords


1. S. Senthamizhchelvan, P. E. Bravo, C. Esaias, M. A. Lodge, J. Merrill, R. F. Hobbs, G. Sgouros, F. M. Bengel. Human biodistribution and radiation dosimetry of 82Rb. J. Nucl. Med. (2010) 51 (10) 1592-1599.
2. S. Q. Shah, A. V. Khan, M. R. Khan. Radiosynthesis and biodistribution of 99mTc-rifampicin: A novel radiotracer for in-vivo infection imaging. Appl. Radiat. Isot. 68 (12) (2010) 2255-2260.
3. B. Mohammadi, S. Shirmardi, M. Erfani, A. Shokri. Assessment of Internal Absorbed Dose in the Human Abdominal Organs from Two Renal Radiopharmaceuticals Based on Experimental Mouse Data. Electronic J. Biol. (2019) 15.
4. L. Lattuada, A. Barge, G. Cravotto, G. B. Giovenzana, L. Tei. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem. Soc. Rev. 40 (5) (2011) 3019-3049.
5. A. Duatti. Review on 99mTc radiopharmaceuticals with emphasis on new advancements. Nucl. Med. Biol. 92 (2021) 202-216.
6. K. Fujimoto, T. Shiinoki, Y. Yuasa, H. Tanaka. Estimation of liver elasticity using the finite element method and four
dimensional computed tomography images as a biomarker of liver fibrosis. Med. Phys. 48 (3) (2021) 1286-1298.
7. F. Benz, R. Mohr, F. Tacke, C. Roderburg. Pulmonary complications in patients with liver cirrhosis. J. Trans. Int. Med. 8 (3) (2020) 150-158.
8. S. Keiding, M. Sørensen, K. Frisch, L. C. Gormsen, O. L. Munk. Quantitative PET of liver functions. Amer. J. Nucl. Med. Mol. Imag. 8 (2) (2018) 73.
9. J. A. Ponto. Preparation and dispensing problems associated with technetium Tc-99m radiopharmaceuticals. Correspondence continuing education courses for nuclear pharmacists and nuclear medicine professionals (2004) 2.
10. B. M. Mohammadi, S. P. Shirmardi, A. A. Shokri, M. Erfani. Estimation of organ-absorbed doses in human from gamma rays of 99mTc-DTPA radiopharmaceutical, using the animal dissection data. Arch. Adv. Biosci. 10 (4) (2019) 22-30.
11. M. Cheki, M. Papie, L. Mansi, S. Kitson, H. Gali. Preliminary human radiation dose estimates of PET renal agents, para-18F-fluorohippuric acid and ortho-124I-iodohippuric acid from rat biodistribution data. Current radiopharmaceuticals 11 (1) (2018) 58-63.
12. W. Snyder. "S" absorbed dose per unit cumulated activity for selected radionuclides and organs. MIRD Pamphlet no. 11 (1975).
13. M. G. Stabin, R. E. Wendt, G. D. Flux. RADAR guide: standard methods for calculating radiation doses for radiopharmaceuticals, part 2—data analysis and dosimetry. J. Nucl. Med. 63 (3) (2022) 485-492.
14. J. Bevelacqua. Internal dosimetry primer. Radiat. Protect. Manag. 22 (5) (2005) 7.
15. H. Battal, A. Y. Ozer. Adverse reactions to radiopharmaceuticals: liver radiopharmaceuticals. Nucl. Med. Commun. 42 (4) (2021) 352-359.
16. N. Percie du Sert, V. Hurst, A. Ahluwalia, S. Alam, M. T. Avey, M. Baker, W.J. Browne,A. Clark, I. C. Cuthill, U. Dirnagl. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. J. Cereb. Blood Flow Metab. 40 (9) (2020) 1769-1777.
17. M. M. Matesan, S. R. Bowen, T. R. Chapman, R. S. Miyaoka, J. W. Velez, M. F. Wanner, M. J. Nyflot, S. Apisarnthanarax, H. J. Vesselle. Assessment of functional liver reserve: old and new in 99mTc-sulfur colloid scintigraphy. Nucl. Med. Commun. 38 (7) (2017) 577-586.
18. S. Mattsson, L. Johansson, J. Liniecki, D. Nosske, M. Stabin, S. Leide-Svegborn, D. Taylor. In Radiation dose to patients from radiopharmaceuticals, World Congress on Medical Physics and Biomedical Engineering, September 7-12, 2009, Munich, Germany, Springer: 2009; pp 474-477.
19. R. Sparks, B. Aydogan. Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose; Oak Ridge Associated Universities, TN (United States): 1999.
20. M. A. Keenan, M. G. Stabin, W. P. Segars, M. J. Fernald. RADAR realistic animal model series for dose assessment. J. Nucl. Med. 51 (3) (2010) 471-476.

21. I. Velikyan, U. Rosenström, T. N. Bulenga, O. Eriksson, G. Antoni. Feasibility of multiple examinations using 68Ga-labelled collagelin analogues: Organ distribution in rat for extrapolation to human organ and whole-body radiation dosimetry. Pharmaceuticals 9 (2) (2016) 31.
22. M. G. Stabin, J. A. Siegel. Physical models and dose factors for use in internal dose assessment. Health Phys. 85 (3) (2003) 294-310.
23. A. Vakili, A. R. Jalilian, A. K. Moghadam, M. Ghazi-Zahedi, B. Salimi. Evaluation and comparison of human absorbed dose of 90Y-DOTA-Cetuximab in various age groups based on distribution data in rats. J. Med. Phys./Assoc. Med. Phys. India 37 (4) (2012) 226.
24. K. Bacher, H. M. Thierens. Accurate dosimetry: an essential step towards good clinical practice in nuclear medicine. Nuclear medicine communications 26 (7) (2005) 581-586.
25. M. Lassmann, C. Chiesa, G. Flux, M. Bardiès. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Europ. J. Nucl. Med. Mol. Imag. 38 (1) (2011) 192-200.
26. M. F. M. Rohani, L. T. Gew. Radionuclide gastric emptying scintigraphy in patients with suspected gastroparesis in Hospital Kuala Lumpur: A preliminary experience. Med. J. Malaysia 76 (4) (2021) 519.