A study of flattening filter removal effect of 15 MV linac on photoneutron dose

Document Type : Conference Paper

Author

Physics Department, Sahand University of Technology, Tabriz, Iran

Abstract

In accelerators operating energies above 7 MV, photoneutrons are produced by the interaction of photonuclear interaction with the heavy metals that constructed the linear accelerator (linac) head. Photoneutrons have destructive biological effects and increase the risk of secondary cancer in healthy organs outside the treatment area. In this study, the effect of flattening filter removal on the spectrum and dose of photoneutrons from the Siemens Primus 15 MV linear accelerator was investigated using the MCNPX2.6 Monte Carlo code. The results showed that removing the flattening filter increased the photon and photoneutron flux at the isocenter. The absorbed doses of photons and photoneutrons dose equivalent per incident electron on the linac target were also increased, without a flattening filter. However, in this case, the photoneutron dose equivalent per 1Gy of the photon absorbed dose at the isocenter is reduced to 50% at different distances from the isocenter.

Keywords


  1.  

    1. S. F. Kry, B. Bednarz, R. M. Howell, L. Dauer, D. Followill, E. Klein, H. PaganettiB. Wang , C.-S. WuuX. G. Xu. AAPM TG 158: measurement and calculation of doses outside the treated volume from external‐beam radiation therapy. Med. Phys. 44 (2017) 391-429.
    2. W. D. Newhauser, M. Durante. Assessing the risk of second malignancies after modern radiotherapy. Nature Rev. Cancer. 11 (2011) 438-448.
    3. S. F. Kry, M. Salehpour, D. Followill, M. Stovall, D. Kuban, R. A. White, I. I. Rosen. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int. J. Radiat. Oncol. Bio. Phys. 62 (2005) 1195-1203.
    4. S. F. Kry, R. M. Howell, U. Titt, M. Salehpour, R. Mohan, O.N. Vassiliev. Energy spectra, sources, and shielding considerations for neutrons generated by a flattening filter‐free Clinac. Med. Phys. 35 (2008) 1906-1911.
    5. L. Montgomery, M. Evans, L. Liang, R. Maglieri, J. Kildea. The effect of the flattening filter on photoneutron production at 10 MV in the Varian TrueBeam linear accelerator. Med. Phys. 45 (2018) 4711-4719.
    6. D. Georg, T. Knoos, B. McClean, Current status and future perspective of flattening filter free photon beams.Med. Phys. 38 (2011) 1280-1293.
    7. R. Delany, G. S. JTudor, A relative comparison of neutron production between conventional and energy-matched flattening-filter-free(FFF)10MV modes for an elekta linear accelerator. Phys. Eng. Express 5 (2019) 1-5.
    8. S. Yani, I. Budiansah, F. Puspa Lestari, R. Tursinah, M. Fahdillah Rhani, F. Haryanto, Investigation of Neutron Contamination of Flattening Filter and Flattening Filter-Free 10-MV Photon Beams in Elekta Infinity TM Accelerator. Iran. J. Med. Phys. 17 (2020) 126-132.
    9. L. Montgomery, M. Evans, L. Liang, R. Maglieri, J. Kildea. The effect of the flattening filter on photoneutron production at 10 MV in the Varian True Beam linear accelerator. Med. Phys. 45 (2018) 4711-4719.
    10. S. Dawna, R. Pala, A. K. Bakshia, R. A. Kinhikarb, K. Joshic, S. V. Jamemac, A. Haneefad, T. Palani Selvama, D. D. Deshpandeb, D. Dattaa. Evaluation of in-field neutron production for medical LINACs with and without flattening filter for various beam parameters-Experiment and Monte Carlo simulation. Radiat. Measurements 118 (2018) 98-107.
    11. S. F. Kry, U. Titt, F. Pönisch, O. N. Vassiliev, M. Salehpour, M. Gillin, R. Mohan. Reduced neutron production through use of a flattening-filter–free accelerator. Int. J. Radiat. Oncol. Bio. Phys. 68 (2007) 1260-1264.
    12. S. F. Kry, R. M. Howell, U. Titt, M. Salehpour, R. Mohan, O. N. Vassiliev. Energy spectra, sources, and shielding considerations for neutrons generated by a flattening filter‐free Clinac. Med. Phys. 35 (2008) 1906-1911.
    13. M. Ashrafinia, A. Hadadi, D. Sardari, E. Saeedzadeh. Investigation of LINAC Structural Effects on Photoneutron Specified Parameters Using FLUKA code. Iran. J. Med. Phys. 17 (2020) 7-14.
    14. M. A. Najem, F. A. Abolaban, Z. Podolyak, N. M. Spyrou. Neutron production from flattening filter free high energy medical linac: A Monte Carlo study. Radiat. Phys. Chem. 116 (2015) 176-180.
    15. N. Mohammadi, S. H. Miri-hakimabad, L. Rafat, F. Akbari, S. Abdollahi. Neutron spectrometry and determination of neutron contamination around the 15 MV Siemens Primus LINAC. J. Radioanal. Nucl. Chem. 304 (2015) 1001-1008.