Evaluating the observance of safety principles in imaging tests with common ultrasound waves in Ahvaz imaging centers

Document Type : Conference Paper

Authors

1 Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Khuzestan, Iran

2 Arak University of Medical Sciences, Arak, Markazi, Iran

Abstract

Despite the fact that the harmful effects of ultrasound waves have not been reported in previous studies, these rays are in the group of non-ionizing rays so as a form of energy have the potential to create biological effects when interacting with tissue. Accordingly, guidelines and recommendations have been proposed regarding the adjustment of scan parameters in ultrasound tests, especially pregnancy ultrasound to maintain the safety of patients and the fetus. Therefore, the aim of this study was to evaluate the scanning parameters and safety of common ultrasound tests used in diagnostic ultrasound centers. This descriptive cross-sectional study was performed by completing 321 checklists designed by researchers in Ahvaz ultrasound centers. Ultrasound examinations including routine pregnancy check-ups, examination of fetal abnormalities and pregnancy problems, initial diagnosis of the disease, and re-examination of cancer recurrence and metastasis were performed. In the examined tests, the standardization of specific parameters of the ultrasound system such as thermal indices (TI), mechanical (MI) and scan time were evaluated. In general, the maximum allowable values ​​of mechanical and thermal indicators for pregnancy tests are 1.0-0 and 0.4-0, respectively, and for non-pregnancy tests are 2.0-0 and 0.9-0, respectively. In this study, the mean thermal and mechanical indices for non-pregnancy tests were 0.30 ± 0.29 and 0.35 ± 1.07, respectively, and for pregnancy tests were 0.32 ± 0.27 and 0.13 ± 1.15, respectively. Based on this, for non-pregnancy tests, the mean of thermal and mechanical indices and scan time were within the standard and below the recommended values. For pregnancy tests, the mean heat index and scan time were appropriate, while the mean mechanical index was higher than the allowable limit for the first trimester of pregnancy. The results of this study indicated that the scan parameters used in the ultrasound examinations of Ahvaz imaging centers were appropriate and the examined examinations were relatively safe. However, more attention must be paid regarding the suitability of all scan parameters for pregnancy tests.

Keywords


  1. J. Abramowicz, G. Kossoff, K. Maršál, G. Haar. Literature review by the ISUOG Bioeffects and Safety Committee. Ultrasound Obstet. Gyneco. 19 (3) (2002) 318-319.
  2. S. B. Barnett, G. Haar, M. C. Ziskin, H.-D. Rott, F. A. Duck, K. Maeda. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine. Ultrasound Med. Biol. 26 (3) (2000) 355-366.
  3. E. Sheiner, I. Shoham‐Vardi, M. J. Hussey, et al. First‐trimester sonography: Is the fetus exposed to high levels of acoustic energy?. J. Clin. Ultrasound 35 (5) (2007) 245-249.
  4. E. Sheiner, J. Freeman, J. S. Abramowicz. Acoustic output as measured by mechanical and thermal indices during routine obstetric ultrasound examinations. J. Ultrasound Med. 24 (12) (2005) 1665-1670.
  5. L. E. Houston, A. O. Odibo, G. A. Macones. The safety of obstetrical ultrasound: a review. Prenat Diagn. 29 (13) (2009) 1204-1212.
  6. S. Bly, M. C. Van den Hof, Diagnostic Imaging Committee, Society of Obstetricians and Gynaecologists of Canada. RETIRED: Obstetric ultrasound biological effects and safety. J. Obstet. Gynaecol. Can. 27 (6) (2005) 572-580.
  7. E. Sheiner, J. S. Abramowicz. Acoustic output as measured by thermal and mechanical indices during fetal nuchal translucency ultrasound examinations. Fetal Diagn. Ther. 25 (1) (2009) 8-10.
  8. H. Kieler, S. Cnattingius, B. Haglund, J. Palmgren, O. Axelsson. Sinistrality—a side-effect of prenatal sonography: A comparative study of young men. Epidemiology 12 (6) (2001) 618-623.
  9. H. Kieler, S. Cnattingius, B. Haglund, J. Palmgren, O. Axelsson. First trimester ultrasound scans and left-handedness. Epidemiology 13 (3) (2002) 370.
  10. J. P. Newnham, D. A. Doherty, G. E. Kendall, S. R. Zubrick, L. L. Landau, F. J. Stanley. Effects of repeated prenatal ultrasound examinations on childhood outcome up to 8 years of age: follow-up of a randomised controlled trial. Lancet. 364 (9450) (2004) 2038-2044.
  11. G. Haar. Ultrasound bioeffects and safety. Proc. Inst. Mech. Eng. H. 224 (2) (2010) 363-373.
  12. C. Kollmann, G. Haar, L. Dolezal, M. Hennerici, K. Salvesen, L. Valentin. Ultrasound Output: thermal (TI) and mechanical (MI) indices. Ultraschall Med. 34 (5) (2013) 422-434.
  13. E. Sheiner, J. S. Abramowicz. A symposium on obstetrical ultrasound: is all this safe for the fetus? Clin. Obstet. Gynecol. 55 (1) (2012) 188-198.
  14. T. R. Nelson, J. B. Fowlkes, J. S. Abramowicz, C. C. Church. Ultrasound biosafety considerations for the practicing sonographer and sonologist. J. Ultrasound Med. 28 (2) (2009) 139-150.
  15. C. Kollmann. New sonographic techniques for harmonic imaging—underlying physical principles. Eur. J. Radiol. 64 (2) (2007) 164-172.
  16. Prepared by the Safety Group of the British Medical Ultrasound Society. Guidelines for the safe use of diagnostic ultrasound equipment. Ultrasound.18 (2) (2010) 52-59.
  17. G. Haar. Ultrasonic imaging: safety considerations. Interface focus. 1 (4) (2011) 686-697.
  18. R. S. Meltzer. Food and Drug Administration ultrasound device regulation: the output display standard, the “mechanical index,” and ultrasound safety. J. Am. Soc. Echocardiogr. 9 (2) (1996) 216-220.
  19. K. I. Morton, G. R. ter Haar, I. J. Stratford, C. R. Hill. The role of cavitation in the interaction of ultrasound with V79 Chinese hamster cells in vitro. Br. J. Cancer Suppl. 5 (1982) 147-150.
  20. D. M. Hallow, A. D. Mahajan, T. E. McCutchen, M. R. Prausnitz. Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med. Biol. 32 (7) (2006) 1111-1122.
  21. C. Y. Lai, C. H. Wu, C. C. Chen, P. C. Li. Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability. Ultrasound Med Biol. 32 (12) (2006) 1931-1941.
  22. D. Nemescu, A. Berescu, M. Onofriescu, D. B. Navolan, C. Rotariu. Safety indices during fetal Echocardiography at the time of first-trimester scan are machine dependent. PLoS One 10 (5) (2015) e0127570.
  23. G. Haar. The New British Medical Ultrasound Society Guidelines for the Safe Use of Diagnostic ultrasound Equipment. SAGE Publications Sage UK: London, England, 2010.
  24. Bioeffects and Safety Committee; K. Salvesen, C. Lees, J. Abramowicz, C. Brezinka, G. Ter Haar, K. Maršál. ISUOG‐WFUMB statement on the non‐medical use of ultrasound, 2011. Ultrasound Obstet Gynecol. 38(5) (2011) 608-608.
  25. D. Nemescu, A. Berescu, C. Rotariu. Variation of safety indices during in the learning curve for color Doppler assessment of the fetal heart at 11+ 0 to 13+ 6 weeks’ gestation. Medical Ultrasonography. 17(4) (2015) 469-474.
  26. M. Le Lous, P. Bouhanna, C. Colmant, P. Rozenberg, T. Quibel. The performance of an intermediate 16th‐week ultrasound scan for the follow‐up of euploid fetuses with increased nuchal translucency. Prenat Diagn. 36 (2) (2016) 148-153.

 

  1. F. M. McAuliffe, K. W. Fong, A. Toi, D. Chitayat, S. Keating, J. A. Johnson. Ultrasound detection of fetal anomalies in conjunction with first-trimester nuchal translucency screening: a feasibility study. Am. J. Obstet. Gynecol. 193 (3) (2005) 1260-1265.
  2. Medicine AIoUi. AIUM practice guideline for the performance of obstetric ultrasound examinations. Ultrasound. Med. 32 (6) (2013) 1083-101.
  3. E. Mador, C. Ekwempu, J. Mutihir, G. Adoga, J. Ogunranti. Ultrasonographic biometry: Biparietal diameter of Nigerian foetuses. Niger. Med. J. 52 (1) (2011) 41.
  4. W. Watson, J. Seeds. Diagnostic Obstetric Ultrasound. Glob. Libr. Women’s Med. 2008.
  5. C. W. Jones, D. Penzkover, R. Pollard, R. S. Kuhlmann. First-Trimester Embryology: An Overview. In J. S. Abramowicz (Ed.), First-Trimester Ultrasound: A Comprehensive Guide (1 ed., pp. 59-76), Springer, 2015.
  6. A. Kaur, A. Kaur. Transvaginal ultrasonography in first trimester of pregnancy and its comparison with transabdominal ultrasonography. J. Pharm. Bioallied Sci. 3 (3) (2011) 329.
  7. M. Messawa, E. Ma’ajeni, M. H. Daghistani, A. Ayaz, M. U. Farooq. The role of doppler ultrasound in high risk pregnancy: A comparative study. Niger. Med. J. 53 (3) (2012) 116-120.
  8. J. S. Abramowicz. Ultrasound imaging of the early fetus: is it safe?. Imag. Med. 1 (1) (2009) 85-95.
  9. C. Deane, C. Lees. Doppler obstetric ultrasound: a graphical display of temporal changes in safety indices. Ultrasound Obstet Gynecol.15 (5) (2000) 418-423.
  10. E. Heiner, R. Hackmon, I. Shoham-Vardi, X. Pombar, M. J. Hussey, H. T. Strassner, J. S. Abramowicz. A comparison between acoustic output indices in 2D and 3D/4D ultrasound in obstetrics. Ultrasound Obstet Gynecol. 29 (3) (2007) 326-328.
  11. E. Sheiner, I. Shoham-Vardi, X. Pombar, M. J. Hussey, H. T. Strassner, J. S. Abramowicz. An increased thermal index can be achieved when performing Doppler studies in obstetric sonography. J. Ultrasound. Med. 26 (1) (2007) 71-76.
  12. M. C. Ziskin. Intrauterine effects of ultrasound: Human epidemiology. Teratology 59 (4) (1999) 252-260.
  13. E. Sheiner, J. S. Abramowicz. Acoustic output as measured by thermal and mechanical indices during fetal nuchal translucency ultrasound examinations. Fetal Diagn Ther. 25 (1) (2009) 8-10.
  14. R. Hershkovitz, E. Sheiner, M. Mazor. Ultrasound in obstetrics: a review of safety. Eur. J. Obstet. Gynecol Reprod Biol. 101 (1) (2002) 15-18.
  15. L. E. Houston, A. O. Odibo, G. A. Macones. The safety of obstetrical ultrasound: a review. Prenat Diagn. 29 (13) (2009) 1204-1212.