[1] J. Azorín, C. Furetta, and A. Scacco. Preparation and properties of thermoluminescent materials, Phys. status solidi, 138(1) (1993) 9–46.
[2] Y. Horowitz, E. Fuks, H. Datz, L. Oster, J. Livingstone, and A. Rosenfeld. Mysteries of LiF TLD response following high ionization density irradiation: Glow curve shapes, dose response, the unified interaction model and modified track structure theory, Radiat. Meas, 46(12) (2011) 1342–1348.
[3] E. Fuks et al. Thermoluminescence solid-state nanodosimetry—the peak 5A/5 dosemeter, Radiat. Prot. Dosimetry, 143(2–4) (2011) 416–426.
[4] A. J. J. Bos, R. N. M. Vijverberg, T. M. Piters, and S. W. S. McKeeve. Effects of cooling and heating rate on trapping parameters in LiF:Mg, Ti crystals, J. Phys. D. Appl. Phys, 25(8) (1992) 1249–1257.
[5] A. Pandey, R. G. Sonkawade, and P. D. Sahare. Thermoluminescence and photoluminescence characteristics of nanocrystalline K2Ca2(SO4)3: Eu, J. Phys. D. Appl. Phys, 35(21) (2002) 2744–2747.
[6] A. Pandey et al. Thermoluminescence properties of nanocrystalline K2Ca2(SO4)3: Eu irradiated with gamma rays and proton beam, Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. With Mater. Atoms, 269(3) (2011) 216–222.
[7] K. Raheja, A. Pandey, S. Bahl, P. Kumar, S. P. Lochab, and B. Singh. Optimization and thermoluminescence study of the nanophosphor BaSO4: Eu, AIP Conf. Proc, 1832(1) (2017) 50044.
[8] N. Salah, P. D. Sahare, S. P. Lochab, and P. Kumar. TL and PL studies on CaSO4: Dy nanoparticles, Radiat. Meas, 41(1) (2006) 40–47.
[9] N. Salah, P. D. Sahare, and A. A. Rupasov. Thermoluminescence of nanocrystalline LiF:Mg, Cu, P, J. Lumin, 124(2) (2007) 357–364.
[10] S. P. Lochab, P. D. Sahare, R. S. Chauhan, N. Salah, R. Ranjan, and A. Pandey. Thermoluminescence and photoluminescence study of nanocrystalline Ba0.97Ca0.03SO4: Eu, J. Phys. D. Appl. Phys, 40(5) (2007) 1343–1350.
[11] S. P. Lochab et al. Nanocrystalline Ba0.97Ca0.03SO4: Eu for ion beams dosimetry, J. Appl. Phys, 104(3) (2008) 33520.
[12] V. Pagonis and R. Chen. Monte Carlo simulations of TL and OSL in nanodosimetric materials and feldspars, Radiat. Meas, 81 (2015) 262–269.
[13] A. Mandowski. Topology-dependent thermoluminescence kinetics, Radiat. Prot. Dosimetry, 119(1–4) (2006) 23–28.
[14] V. Pagonis, E. Gochnour, M. Hennessey, and C. Knower. Monte Carlo simulations of luminescence processes under quasi-equilibrium (QE) conditions, Radiat. Meas, 67 (2014) 67–76.
[15] L. Sadri, K. Mohammadi, S. Setayeshi, and M. H. Khorasani. Synthesis, simulation of semi-localized transitions (SLT) model of LiF:Mg,Ti phosphors and investigation of displacement peak in glow curves, Radiat. Meas, 125 (2019) 89–95.
[16] J. L. Lawless, R. Chen, D. Lo, and V. Pagonis. A model for non-monotonic dose dependence of thermoluminescence (TL), J. Phys, Condens. Matter, 17(4) (2005) 737–753.