Measurement of entrance skin dose (ESD) by TLD dosimeters and its comparison with treatment design systems in GYN brachytherapy

Authors

Abstract

Careful treatment planning of brachytherapy is an essential aspect of cancer treatment. The aim of this study was to evaluate the accuracy of calculations of treatment design system in GYN brachytherapy by BEBIG-60Co device by performing entrance skin dosimetry (ESD) using TLD dosimeters. For this study, 11 GYN cancer patients selected for brachytherapy to measure skin surface dosimetry. Finally, a comparison was made between the dose calculation from the treatment design system and the dose measured by the TLDs. In about 90% of the cases, there was a good agreement between the treatment dose calculation and the TLD measurement (taking into account the 5.5% uncertainty for the TLD). Increasing the dose in the anterior position of patients 5 and 11 can be due to the displacement of the applicator in the direction of length. For patient No. 8, moving the Ooid applicator to the right has led to an increase in dose and a decrease in the right and left directions. Several factors, such as the movement of markers on the patient's skin and the movement of applicators during patient transfer between imaging and treatment rooms, cause differences in the dose of TLDs compared to the dose of TPS. Therefore, the method of dosimetry of the skin surface can be a suitable method to confirm the accuracy of the dose in the treatment of GYN HDR.

Keywords


[1] B. Chittenden, G. Fullerton, A Maheshwari and S. Bhattacharya. Polycystic ovary syndrome and the risk of gynaecological cancer: a systematic review, Reprod Biomed Online. 19 (3), 398 (2009) 398-405. [2] R. Sankaranarayanan and J. Ferlay. Worldwide burden of gynaecological cancer:the size of the problem. Best Pract Res Clin Obstet Gynaeco. 20(2),207 (2006) 207-225. [3] G. Rieck and A. Fiander. The effect of lifestyle factors on gynaecological cancer, Best Pract Res Clin Obstet Gynaecol. 20 (2), 227(2006) 227-251. [4] M. Allahverdi, M. Sarkhosh M, M. Aghili, R. Jaberi, A. Adelnia and G. Geraily. Evaluation of treatment planning system of brachytherapy according to dose to the rectum delivered, Radiat Prot Dosim. 150 (3), 312(2011) 312-315. [5] S. Gholami, H.R. Mirzaei and A.J. Arfaee. Dose distribution verification for GYN brachytherapy using EBT Gafchromic film and TG-43 calculation, Rep Pract Oncol Radiother. 21 (5), 480(2016) 480-486. [6] S. Sahoo, T.P. Selvam, R. Vishwakarma and G. Chourasiya. Monte Carlo modeling of 60Co HDR brachytherapy source in water and in different solid water phantom materials, J Med Phys Assoc Med Physicists India. 35 (1), 15(2010) 15-22. [7] G. Anagnostopoulos, D. Baltas and A. Geretschlaeger. In vivo thermoluminescence dosimetry dose verification of transperineal 192Ir high-dose-rate brachytherapy using CT-based planning for the treatment of prostate cancer, Int J Radiat Oncol Biol Phys. 57 (4), 1183 (2003) 1183-1191. [8] B. Reniers, G. Landry, R. Eichner, A. Hallil and F. Verhaegen. In vivo dosimetry for gynaecological brachytherapy using a novel position sensitive radiation detector: feasibility study, Med Phys. 39(4), 1925(2012) 1925-1935. [9] J.A. Raffi, S.D. Davis and C.G. Hammer. Determination of exit skin dose for intracavitary accelerated partial breast irradiation with thermoluminescent dosimeters, Med Phys. 37(6), 2693(2010) 2693-2702. [10] C. Waldhäusl, A. Wambersie, R. Pötter and D. Georg. In-vivo dosimetry for gynaecological brachytherapy: physical and clinical considerations, Radiother Oncol . 77 (3), 310(2005) 310-317. [11] G. Kertzscher, A. Rosenfeld and S. Beddar. Tanderup K, Cygler J. In vivo dosimetry: trends and prospects for brachytherapy, British J Radiol, 87(1041), 206(2014) 02-06. [12] A. Haughey, G. Coalter and K. Mugabe. Evaluation of linear array MOSFET detectors for in vivo dosimetry to measure rectal dose in HDR brachytherapy, Australas Phys Eng Sci Med. 34 (3), 361(2011) 361-366. [13] A.S. Kirov, J.F. Williamson, A. Meigooni and Y. Zhu. TLD, diode and Monte Carlo dosimetry of an 192Ir source for high dose-rate brachytherapy, Phys Med Biol. 40 (12), 2015(1995) 2015-2036. [14] P.W. Grigsby, A. Georgiou, F Jeffrey and C.A. Perez. Anatomic variation of gynecologic brachytherapy prescription points, Int J Radiat Oncol Biol Phys. 27 (3), 725(1993) 1-5. [15] M.A. Mosleh-Shirazi, E. Shahcheraghi-Motlagh and M.H. Gholami. Influence of dwell time homogeneity error weight parameter on treatment plan quality in inverse optimized high-dose-rate cervix brachytherapy using SagiPlan, J Contemp Brachytherapy. 11 (3), 256(2019) 256-266. [16] M. Marvi, S. Gholami and M. Salehi Barough. Evaluation of exit skin dose for intra-cavitary brachytherapy treatments by the BEBIG 60Co machine using thermoluminescent dosimeters, Journal of Radiotherapy in Practice.1 (16), 1 (2020) 49-54. [17] C.N. Nomden, A.A. de Leeuw and M.A. Moerland. Clinical use of the Utrecht applicator for combined intracavitary/interstitial brachytherapy treatment in locally advanced cervical cancer. Int J Radiat Oncol Biol Phys. 82 (4), 1424(2012) 1424-1430. [18] C. Haie-Meder, R. Pötter and E. Van Limbergen. Recommendations from gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV, Radiother Oncol. 74 (3), 235(2005) 67-77. [19] M.J. Rivard, B.M. Coursey and L.A. DeWerd. Update of AAPM Task Group No. 43 Report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys. 31 (3), 633(2004) 633-674. [20] A. Palmer, D. Bradley and A. Nisbet. Physics-aspects of dose accuracy in high dose rate (HDR) brachytherapy: source dosimetry, treatment planning, equipment performance and in vivo verification techniques, J Contemp Brachytherapy. 4 (2), 81(2012) 81-91. [21] K. Asnaashari, S. Gholami and H. Khosravi. Lessons learnt from errors in radiotherapy centers, Iranian J Radiat Res. 12 (4), 361(2014) 361-367. [22] T.P. Hellebust, C Kirisits and D. Berger. Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy, Radiother Oncol. 96 (2), 153(2010) 153-160. [23] M. Andrew, Y. Kim and T Ginader. Reduction of applicator displacement in MR/CT-guided cervical cancer HDR brachytherapy by the use of patient hover transport system J Contemp Brachytherapy. 10 (1). 85(2018) 85-90.