[1] G. Delaney, S. Jacob, C. Featherstone and M. Barton. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer, 104(6) (2005) 1129-1137.
[2] M. Babaei and M. Ganjalikhani. The potential effectiveness of anoparticles as radio sensitizers for radiotherapy, Biolmpacts, 4(1) (2014) 15-20.
[3] D. Kwatra, A. Venugopal and Sh. Anant. Nanoparticles in radiation therapy: a summary of various approaches to enhance radiosensitization in cancer, Translation Cancer Reaserch, 2(4) (2013) 330-342.
[4] W.N. Rahman, N. Bishara, T. Ackerly, C.F. He and P. Jackson. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy, Nanomedicine, 5(2) (2009) 136-142.
[5] L. Sancey, F. Lux, S. Kotb and S. Roux. The Use of Theranostic Gadolinium-Based Nanoprobes to Improve Radiotherapy Efficacy, Br J Radiol, 87(1041) (2014) 20140134.
[6] J.C. G. Jeynes, M.J. Merchant, A. Spindler, A-C. Wera and K.J. Kirkby. Investigation of gold nanoparticles radiosensitization mechanisms using a free radical scavenger and protons of different energies, Physics in Medicine & Biology, 59(21) (2014) 6431-6443.
[7] L. Stefancikova, E. Porcel, P. Eustache, Sh. Li, D. Salado and S. Marco. Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells, Cancer Nanotechnol; 5(1) (2014):6.
[8] Y. Prezado, G. Fois, G.L. Duc and A. Bravin. Gadolinium dose enhancement studies in microbeam radiation therapy, Med phys. 36(8) (2009) 3568-3574.
[9] F. Taupin, M. Flander, R. Delorme, T. Btochard, J.F. Mayol, P. Perriat, L. Sancey, F. Lux, R.F. Barth, M. Carriere, L. Ravanat and H. Elleaume. Gadolinium nanoparticles and Nanotechnol contrast agent as radiation sensitizers, Phys. Med. Biol. 60(11) (2015) 4449-4464.
[10] A. Detappe, S. Kunjachan, P. Drane, S. Kotb, M. Myronakis, D. E. Biancur, T. Ireland, M. Wagar, F. Lux, O. Tillement and R. Berbeco. Key clinical beam parameters for nano-particle-contrast agent as radiation sensitizers, Scientific reports, 6(1)(2016).
[11] D.G. Zhang, V. Feygelman, E.G. Moros, K. Latifi and G.G. Zhang. Monte Carlo Study of Radiation Dose Enhancement by Gadolinium in Megavoltage and High Dose Rate Radiotherapy, Plos one, 9(10) (2014).
[12] l. Martinez-Rovira and Y. Prezadoa. Monte Carlo dose enhancement studies in microbeam radiation therapy, Med Phys, 38(7) (2011) 4430-4439.
[13] R. Delorme, F. Taupin, M. Flaender, J. Ravanant, Ch. Champion, M. Agelou and H. Elleaume. Comparison of Gadolinium Nanoparticles and Molecular Contrast Agents for Radiation Therapy Enhancement, Med. Phys, 44(11) (2017) 5949-5960.
[14] J.L. Robar, S. Ricca and M.A. Martin. Tumor dose enhancement using modified megavoltage photon beams and contrast media. Phys Med Biol, 47(14) (2014) 2433–2449.
[15] M. Santibanez, M. Fuentealbe, F.A. Torres-Ruiz and A. Vargas. Experimental determination of the gadolinium dose enhancement in phantom irradiated with low energy X-ray sources by a spectrophotometer-Gafchromic-EBT3 dosimetry system, Applied Radiation and Isotopes, 154(2019) 108857.
[16] M. Luchette, H. Korideck, M. Makrigiorgos, O. Tillement and R. Berbeco. Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells, Nanomedicine, 10(8) (2014) 1751-5.
[17] N.R. Paudel, Nanoparticle-aided radiation therapy: micro-dosimetry and evaluation of the mediators producing biological damage, Univercity of Toledo, August 2014.
[20] H. Ranjbar, M. Shamsaei and M.R. Ghasemi. Investigation of dose enhancement factor of high intensity low mono-energetic X-ray radiation with labeled tissues by gold nanoparticles, Nukleonica, 55(3) (2010) 307-312.