[1] Brown, A. & Suit, H. The centenary of the discovery of the Bragg peak. Radiotherapy and Oncology 73, 265–268, doi:10.1016/j.radonc.2004.09.008 (2004).
[2] Wilson, R. R. Radiological use of fast protons. Radiology 47, 487–91 (1946).
[3] Pedroni, E. et al. The 200-MeV proton therapy project at the Paul Scherrer Institute: conceptual design and practical realization. Medical physics 22, 37–53, doi:10.1118/1.597522 (1995).
[4] Newhauser, W. D. & Zhang, R. The physics of proton therapy. Physics in Medicine & Biology 60, R155, doi:10.1088/0031 9155/60/8/R155 (2015).
[5] Lomax, A. J., Pedroni, E., Rutz, H. P. & Goitein, G. The clinical potential of intensity modulated proton therapy. Zeitschrift für Medizinische Physik 14, 147–152 (2004).
[6] Schulz-Ertner, D. & Tsujii, H. Particle radiation therapy using proton and heavier ion beams. Journal of Clinical Oncology 25, 953–964, doi:10.1200/JCO.2006.09.7816 (2007).
[7] Schlaff, C. D., Krauze, A., Belard, A., ’Connell, J. J. & Camphausen, Ka Bringing the heavy: carbon ion therapy in the radiobiological and clinical context. Radiation oncology (London, England) 9, 88, doi:10.1186/1748-717X-9-88 (2014).
[8] Allen, A. M. et al. An evidence based review of proton beam therapy: The report of ASTRO’s emerging technology committee. Radiotherapy and Oncology 103, 8–11, doi:10.1016/j.radonc.2012.02.001 (2012).
[9] De Ruysscher, D. et al. Charged particles in radiotherapy: A 5-year update of a systematic review. Radiotherapy and Oncology 103, 5–7, doi:10.1016/j.radonc.2012.01.003 (2012).
[10] Goitein, M. Trials and tribulations in charged particle radiotherapy. Radiotherapy and Oncology 95, 23–31, doi:10.1016/j.radonc.2009.06.012 (2010).