[1] Fewell T R and Shuping R E. Photon energy distribution of some typical diagnostic x-ray beams Med Phys 1977; 4:187–97
[2] Dance D et al. Influence of anode/filter material and tube potential on contrast, signal-to-noise ratio and average absorbed dose in mammography: a Monte Carlo study Br J Radiol 2000; 73:1056–67.
[3] Ay M R, Shahriari M, Sarkar S, Adib M and Zaidi H. Monte Carlo simulation of x-ray spectra in diagnostic radiology and mammography using MCNPX. Phys Med Biol 2004; 49: 4897-4917.
[4] Boone J M and Seibert J A. An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV Med Phys 1997; 24: 1661–70.
[5] Cho H-M, Kim H-J, Choi Y-N, Lee S-W, Ryu H-J and Lee Y-J. The effects of photon flux on energy spectra and imaging characteristics in a photon-counting x-ray detector. Phys Med Biol 2013; 58:4865–4879.
[6] International Atomic Energy Agency. Quality assurance program for digital mammography. IAEA Human Health Series Publication. No. 17. VIENNA, 2011.
[7] International Commission on Radiological Protection. Protection of the patient in diagnostic radiology. ICRP Publication 34. New York, NY: Pergamon Press, 1982.
[8] M.T. Bahreyni‑Toosi, SH. Nasseri, M. Momennezhad, F. Hasanabadi, H. Gholamhosseinian. Monte Carlo Simulation of a 6 MV X‑Ray Beam for Open and Wedge Radiation Fields, Using GATE Code, Journal of Medical Signals & Sensors, Vol 4, 2014, 268-273.
[9] M. A. Sousa Lacerda, T.A. Silva, A. H Oliveira, the methodology for evaluating half-value layer and its influence on the diagnostic radiology, Radiol Bras 2007;40(5):331–336