[1] E. Evans and J. Staffurth. Principles of Cancer Treatment by Radiotherapy. Surgery, Oxford, (2018).
[2] K. Leszczynski and S. Boyko. On the Controversies Surrounding the Origins of Radiation Therapy. Radiotherapy and oncology, 3 (1997) 213–217.
[3] A. Facure, R.C. Falcao, AX da Silva, V.R. Crispim, and J.C. Vitorelli,. A study of neutron spectra from medical linear accelerators. Applied Radiation and Isotopes, 62 (2005) 69–72.
[4] P. Andreo. Monte Carlo Simulations in Radiotherapy Dosimetry. Radiation Oncology, 13 (2018) 121.
[5] O. Chibani, CM. Ma. Photonuclear Dose Calculations for High‐Energy Photon Beams from Siemens and Varian Linacs. Medical Physics, 30 (2003) 1990–2000.
[6] A. Tzedakis, J.E. Damilakis, M. Mazonakis, J. Stratakis, H. Varveris, and N. Gourtsoyiannis. Influence of Initial Electron Beam Parameters on Monte Carlo Calculated Absorbed Dose Distributions for Radiotherapy Photon Beams. Medical Physics, 31 (2004) 907–913.
[7] S.A. Martinez-Ovalle, R. Barquero, JM. Gómez-Ros and A.M. Lallena. Neutron Dose Equivalent and Neutron Spectra in Tissue for Clinical Linacs Operating at 15, 18 and 20 MV. Radiation Protection Dosimetry, 147 (2011) 498–511.
[8] D.J. Landry and D.W. Anderson. Measurement of accelerator bremsstrahlung spectra with a high efficiency Ge detector, 18 (1991) 527–532.
[9] B.A. Faddegon, C.K. Ross and D.W.O. Rogers. Forward directed bremsstrahlung of 10 to 30 MeV electrons incident on thick targets of Al and Pb. Medical Physics, 17 (1990) 773–785.
[10] J. Brownridge, S. Samnick, P. Tipton, J. Veselka and N. Yeh. Determination of the Photon Spectrum of a Clinical accelerator, 11 (1984) 794–796.
[11] B. Juste, R. Miro, G. Verdu and A. Santos. Linac Energy Spectrum Determination Using the Schiff Bremsstrahlung Parametric Version, (2013).
[12] A. Mesbahi, P. Mehnati and A. Keshtkar. A Comparative Monte Carlo Study on 6MV Photon Beam Characteristics of Varian 21EX and Elekta SL-25 linacs, (2007) 23–30.
[13] A. Nisbet, H. Weatherburn, J.D. Fenwick and G. McVey. Spectral Reconstruction of Clinical Megavoltage Photon Beams and the Implications of Spectral Determination on the Dosimetry of Such Beams. Physics in Medicine & Biology, 43 (1998) 1507.
[14] J.C.L. Chow and A.M. Owrangi. A Surface Energy Spectral Study on the Bone Heterogeneity and Beam Obliquity Using the Flattened and Unflattened Photon Beams. Medical Dosimetry, 37 (2016) 63–70.
[15] E.B. Podgorsak, J.A. Rawlinson, M.I. Glavinovic and H.E. Johns. Design of X-ray Targets for High Energy Linear Accelerators in Radiotherapy. American Journal of Roentgenology, 121 (1974) 873–882.
[16] M. Allahverdi, M. Zabihzadeh, M.R. Ay, S.R. Mahdavi, M. Shahriari, A. Mesbahi and H. Alijanzadeh. Monte Carlo Estimation of Electron Contamination in an 18 MV Clinical Photon Beam. Radiation protection dosimetry, 135 (2011) 21–32.
[17] M. Beigi, F. Afarande and H. Ghiasi. Safe Bunker Designing for the 18 MV Varian 2100 Clinac: a comparison between Monte Carlo simulation based upon data and new protocol recommendations. Reports of Practical Oncology & Radiotherapy, 21 (2016.) 42–49.
[18] C. Yazgan and Y. Cecen. Monte Carlo Simulation of a Medical Linear Accelerator for Filtered and FFF Systems. Turkish Journal of Physics, 41 (2017) 498–506.
[19] J.S. Jiménez, M.D. Lagos and S.A. Martinez-Ovalle. A Monte Carlo Study of the Photon Spectrum due to the Different Materials Used in the Construction of Flattening Filters of LINAC. Computational and mathematical methods in medicine, (2017).
[20] L.S. Waters. MCNPX user’s manual. Los Alamos National Laboratory, (2002).
[21] N. Tsoulfanidis. Measurement and detection of radiation. CRC press, (2010).