[1] N. Simos, K. Perkins, J. Jo, J. Carew and J. Ramsey. Armenian nuclear power plant: USNRC assistance program for Seismic Upgrade and Safety Analysis, SMiRT 17, 34 (2003) 993–1003.
[2] G. Sevikyan, M. Vardanyan, S. Apikyan, Nuclear energy in Armenia history, problems, possibilities and outlook. Nuclear Power and Energy Security. Springer, 1 (2009) 133–142.
[3] G.D. Rolph, F. Ngan and R.R. Draxler. Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model. Journal of Environmental Radioactivity, 136 (2014) 41–55.
[4] A.F. Stein, R.R. Draxler, G.D. Rolph, B.J.B. Stunder, M.D. Cohen & F. Ngan. NOAA’S HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of American meteorological society, 96 (2015) 2059–2077.
[5] R.R. Draxler and G. Hess. An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition. Australian Meteorological Magazine. 47 (1998) 295–308.
[6] I. Korsakissok, A. Mathieu, D. Didier. Atmospheric dispersion and ground deposition induced by the Fukushima Nuclear Power Plant accident: A local-scale simulation and sensitivity study. Atmospheric Environment. 70 (2013) 267–279.
[7] P.P. Povinec, K. Hirose and M. Aoyama. Fukushima accident: radioactivity impact on the environment. Elsevier, Boston, 33 (2013) 56–101.
[8] R.R. Draxler, G.D. Rolph. Evaluation of the Transfer Coefficient Matrix (TCM) approach to model the atmospheric radionuclide air concentrations from Fukushima, J. Geophys. Res., 117 (2012) D05107.