Measurement of entrance skin dose and organ dose in cephalometry

Authors

10.22052/6.2.45

Abstract

TL dosimetry is known as one of the effective dose estimation methods in diagnostic radiology. Cephalometry is used by dentists, oral and maxillofacial surgeons to choose the appropriate treatment. The purpose of this study is to measure the entrance skin dose, and dose to different organs of the patients in cephalometry using TLD-100. The entrance skin, and organ dose were obtained by putting TLDs on the surface, and inside the Rando phantom. The dose to different organs like thyroid, eyes, maxilla, parotid, sub-lingual, and submandibular salivary glands were measured. According to the results obtained in this study, the entrance skin dose to neck, cheek, and temporal are 75.8, 58.1, 113.3 µGy, while minimum, and maximum organ doses were 2.5, and 107.8 µGy for right temporal, and right parotid salivary gland.
 

Keywords


[1] N. Theocharopoulos, K. Perisinakis, J. Damilakis, H. Varveris, N. Gourtsoyiannis. Comparison of four methods for assessing patient effective dose from radiological examinations. Med Phys. 29(9) (2002) 2070–2079. [2] J. Darko, EK. Osei. A survey of organe quivalent and effective doses from diagnostic radiology procedures. ISRN Radiology.2013 (2013) 1–9. [3] FA. Mettler, W Huda, TT. Yoshizumi, M. Mahesh. Effective Doses in Radiology and Diagnostic Nuclear Medicine: A Catalog Radiology.248(1) (2008) 254–263. [4] LB. Omrane, F. Verhaegen, N. Chahed, S. Mtimet. An investigation of entrance surface dose calculations for diagnostic radiology using Monte Carlo simulations and radiotherapy dosimetry formalisms. Phys Med Biol. 48(12) (2003)1809–24. [5] L. Duggan, H. Warren-Forward, T. Smith, T. Kron. Investigation of dose reduction in neonatal radiography using specially designed phantoms and LiF:Mg,Cu,P TLDs. Br J Radiol. 76(904) (2003) 232–237. [6] R. Mooney, PS.Thomas. Dose reduction in a paediatric X-ray department following optimization of radiographic technique. Br J Radiol. 71(848) (1998) 852–860. [7] ICRP. Reccommendations of ICRP. ICRP publication 60, Ann, ICRP 21, NOS 1-3. (1991). [8]EK. Pae, GA. McKenna, TJ. Sheehan, R. Garcia, A. Kuhlberg, R. Nanda. Role of lateral cephalograms in assessing severity and difficulty of orthodontic cases. Am J Orthod Dentofacial Orthop. 120(2001) 254–262. [9] P. Nijkamp, L. Habets, I. Aartman, A. Zentner. The influence of cephalometrics on orthodontic treatment planning. Eur J Orthod. 30 (2008) 630–635. [10] L. Devereux, D. Moles, SJ. Cunningham, M. McKnight. How important are lateral cephalometric radiographs in orthodontic treatment planning? Am J Orthod Dentofacial Orthop. 139 (2011)175–181. [11] AR. Durao, A. Alqerban, AP. Ferreira, R. Jacobs. Influence of lateral cephalometric radiography in orthodontic diagnosis and treatment planning. Angle Orthod. 85 (2015) 206–210. [12] M.P. Major, C. Flores-Mir & P.W. Major. Assessment of lateral cephalometric diagnosis of adenoid hypertrophy and posterior upper airway obstruction: a systematic review. American journal of orthodontics and dentofacial orthopedics. 130(6) (2006) 700–708. [13] S. Gavala, C. Donta, K. Tsiklakis, A. Boziari, V. Kamenopoulou, HC. Stamatakis. Radiation dose reduction in direct digital panoramic radiography. Eur J Radiol. 71(1) (2009) 41–48. [14] K. Tsiklakis, C. Donta-Bakoyanni, M. Tassopoulou, V. kamenopoulou. Absorbed radiation dose during lateral cephalometric radiography: comparison of screen-film systems and field size combinations. J Clin Pediat Dent. 24(2) (2000) 117–121. [15] R. Faghihi, S. Mehdizadeh, S. Sina, FN. Alizadeh, B. Zeinali, GR. Kamyab, S. Aghevlian, H. Khorramdel, I. Namazi, M. Heirani, M. Moshkriz, H. Mahani, M. Sharifzadeh. Radiation dose to neonates undergoing X-ray imaging in special care baby units in Iran. Radiat Prot Dosimetry. 150(1) (2012) 55–59. [16] M. Ghaedizirgar, R. Faghihi, R. Paydar, S. Sina. Effective dose in two different dental CBCT systems: Newtom VGi and Planmeca 3D MID. Radiation Protection Dosimetry. 176(3) (2017) 1–7. [17] M. Zehtabian, N. Dehghan, M. Danaei Ghazanfarkhani, M. Haghighatafshar, & S. Sina. Measurement of the Dose to the Family Members Taking Care of Thyroid Cancer Patients Undergoing I-131 Therapy in Nuclear Medicine Using TLD-100. Radiation protection dosimetry, 174(4) (2016) 541–544. [18] M. Sadeghi, R. Faghihi, & S. Sina. Developing an Optimum Protocol for Thermoluminescence Dosimetry with GR-200 Chips using Taguchi Method. Radiation protection dosimetry. 175(2) (2016) 284–294. [19] S. Sina, F. Mirzaiee, T. Padargani, M. Zehtabian, & S. Ahrari. Evaluation of the Entrance Skin Dose in Animals Undergoing Diagnostic Radiology Using LiF, Mg, Ti Thermoluminescence Dosimetry (TLD-100). Iranian Journal of Medical Physics. 13(2) (2016) 118–124. [20] L. Gonzalez, R. Fernandez, V. Ziraldo, ER. Vano. Reference level for patient dose in dental skull lateral teleradiography. Br J Radiol 77 (2004) 735–739. [21] H. Visser, T. Ro¨ dig, KP. Hermann. Dose reduction by directdigital cephalometric radiography. Angle Orth 71 (2001) 159–163. [22] J.E. Gilda, H.D. Maillie. Dosimetry of absorbed radiation in radiographic cephalometry. Oral Surg Oral Med Oral Pathol 73 (1992) 638–643. [23] J.E. Gray, B.R. Archer, P.F. Butler, B.B. Hobbs, F.A. Mettler, R.J. Pizzutiello, B.A. Schueler, K.J. Strauss, O.H. Suleiman, M.J. Yaffe. Reference values for diagnostic radiology: application and impact. Radiology 235 (2005) 354–358.