Dose calculations of microbeam radiation therapy (MRT) in water and head equivalent phantoms using GEANT4 simulation

Authors

10.22052/5.3.33

Abstract

Microbeam radiation therapy (MRT) is an innovative experimental method used for radioresistant tumours such as glioma especially in pediatric cancer. In MRT, the patient is irradiated with arrays of parallel and high-intensity X-ray microbeams. The MRT offers dose profiles consisting of a pattern of peaks and valleys. The peak-to-valley dose ratio (PVDR) is the most important metric determining the effectiveness of MRT. Its value has to be maximized in normal tissue, and minimized in cancerous tissue in order to avoid any recovery. The main aim of this study is to investigate the possible effect of beam parameters on PVDR. To do so, the 3D dose distributions in water and head equivalent phantoms are computed with various microbeam configurations using GEANT4 simulation. The results show that the most promising PVDR are obtained at 100keV and ESRF spectrum. In addition, using a 300keV beam is not suitable for microbeams separation distance below 400μm. By increasing radiation field size, microbeam’s width and their separation, PVDR decreases for all energies. PVDRs in the bone rapidly fall because of the dominant photoelectric phenomenon for such a high-Z material.
 

Keywords


[1] D.N. Slatkin, P. Spanne, F.A. Dilmanian and M. Sandborg. Microbeam radiation therapy. Med. Phys. 19 (1992) 1395–1400. [2] D.N. Slatkin, P. Spanne, F.A. Dilmanian, J.O. Gebbers and J.A. Laissue. Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler. Proc. Natl. Acad. Sci. USA, 92 (1995) 8783–8787. [3] H.j. Curtis. the use of a deutron microbeam for simulating the the biological effects of heavy cosmic-ray particles. Radiat. Res. Suppl. (1967) 250–257. [4] A. Bouchet, B. Lemasson, G. Le Duc, C. Maisin, E. Brauer-Krisch, E.A. Siegbahn, L. Renaud, E. Khalil, C. Remy, C. Poillot, A. Bravin, J.A. Laissue, E.L. Barbier and R. Serduc. Preferential effect of synchrotron microbeam radiation therapy on intracerebral 9L gliosarcoma vascular networks, Int. J. Radiat. Oncol. Biol. Phys. 78 (2010) 1503–1512. [5] J.A. Laissue, N. Lyubimova, H.P. Wagner, D. W, Archer, D. N. Slatkin, M. Di Michiel, C. Nemoz, M. Renier, E, Brauer, P. O. Spanne, J. Gebbers, K, Dixon, H. Blattmann. Microbeam radiation therapy. Proc. Of SPIE, Denver, USA. (1999) 38-45. [6] Y. Prezado, G .Fois, G .Le Duc , A .Bravin. Gadolinium dose enhancement studies in microbeam radiation therapy. Med. Phys. 36 (2009) 3568–74. [7] J. Torres, M.J. Buades, J.F. Almansa, R. Guerrero and A.M. Lallena. Dosimetry characterization of 32P intravascular brachytherapy source wires using MC codes PENELOPE and GEANT4. Med. Phys. 31 (2004) 296–304. [8] J. Spiga, E.A. Siegbahn, E. Brauer-Krisch, P. Randaccio and A. Bravin. The geant4 toolkit for microdosimetry calculations: application to microbeam radiation therapy (MRT). Med Phys. 34(11) (2007) 4322–4330. [9] J. Crosbie, I. DzintarsSvalbe, S.M. Midgley, N. Yagi, P.A. Walton Rogers and R. Lewis. A method of dosimetry for synchrotron microbeam radiation therapy using radiochromic films of different sensitivity. Phys. Med. Biol. 53 (2008) 6861–6877. [10] Z. Bencokova, J. Balosso and N. Foray. Radiobiological features of the anti-cancer strategies involving synchrotron x-rays. J. Synchrotron Radiat. 15 (2008) 74–85. [11] E. Brauer-Krisch, H. Requardt, T. Brochard, M. Renier, J.A. Laissue and A. Bravin. New technology enables high precision multislit collimators for microbeam radiation therapy. Rev. Sci. Instrum. 80 (2009) 074301. [12] I. Martinez-Rovira, J. Sempau, J.M. Fernandez-Varea, A. Bravin and Y. Prezado. Monte Carlo dosimetry for forthcoming clinical trials in x-ray microbeam radiation therapy. Phys. Med. Biol. 55 (2010) 4375–4388. [13] O.K. Harling, K.A. Roberts, D.J. Moulin and R.D. Rogus. Head phantoms for neutron capture therapy Med. Phys. 22 (1995) 579–83. [14] E. Braüer-Krisch, A. Rosenfeld, M. Lerch, M. Petasecca, M. Akselrod, J. Sykora, J. Bartz, M.Ptaszkiewicz, P. Olko, A. Berg, M. Wieland, S. Doran, T. Brochard, A. Kamlowski, G. Cellere, A. Paccagnella, E.A. Siegbahn, Y. Prezado, I. Martínez-Rovira, A. Bravin, L. Dusseau and P. Berkvens. Potential high resolution dosimeters for MRT. AIP Conf. Proc. 1266 (2010) 89–97. [15] E.A. Siegbahn, E. Brauer-Krisch, J. Stepanek, H. Blattmann, J.A. Laissue and A. Bravin. Dosimetric studies of microbeam radiation therapy with Monte Carlo simulations. Nucl.Instrum. Methods A. (2005) 54–58. [16] F. Salvat, J.M. Fernández-Varea, J. Sempau. PENELOPE, a Code System for Monte Carlo Simulation of Electron and Photon Transport. OECD Nuclear Energy Agency, Issyles-Moulineaux-France, (2003). [17] M. De Felici, R. Felici, M. Sanchez del Rio, C.Ferreto, T. Bacarian and F.A. Dilmanian. Dose distribution from x-ray microbeam arrays applied to radiation therapy: an egs4 monte carlo study. Med Phys. 32(8) (2005) 2455–63. [18] I. Martínez-Rovira, J. Sempau, Y. Prezado. Development and commissioning of a Monte Carlo photon beam model for the forthcoming clinical trials in Microbeam Radiation Therapy. Med. Phys. 39 (2012) 119–131. [19] ICRU. Photon, electron, proton and neutron interaction data for body tissues, with data disk, ICRU Report 46D, Bethesda-Maryland, USA, (1992).