[1] P.Y. Lipscy, K.E. Kushida and T. Incerti. The Fukushima disaster and Japan’s nuclear Plant vulnerability in comparative perspective. Environ. Sci. Technol., 47 (2013) 6082−6088.
[2] ICRIN Project 2011. International Chernobyl Portal chernobyl.info. Retrieved (2011).
[3] Environmental consequences of the Chernobyl accident and their remediation: Twenty years of experience. Report of the Chernobyl Forum Expert Group ‘Environment’. Vienna: International Atomic Energy Agency. (2006).
[4] J. Brandt, J.H. Christensen and L.M. Frohn. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model. Atmos. Chem. Phys., 2 (2002) 397–417.
[5] Y.A. Izrael. Radioactive fallout after nuclear explosions and accidents. Elsevier Science Ltd (2002).
[6] H.Y. An, Y. Kang, S. Song and Y. Kim. Atmospheric dispersion characteristics of radioactive materials according to the local weather and emission conditions, J. Radiat. Prot. Res. 41(4) (2016) 315-327.
[11] D.G. Cacuci. Handbook of nuclear engineering, Springer, (2010), Ch. 6.
[13] New Zealand ministry for the environment, Good practice guide for atmospheric dispersion modelling, Wellington, N.Z. ministry for the Environment, (2004).
[14] S.T. Hanna, G.A. Briggs and R.P. Hosker. Handbook on atmospheric diffusion models and methods, U.S. Dept. of Energy, Washington D.C, (1982).
[15] HYSPLIT summery handout, Air resources laboratory, available at https://www.arl.noaa.gov/ (11/28/2017).
[16] D.B. Turner. Workbook of atmospheric dispersion estimates: An introduction to dispersion modeling, 2nd ed., Lewis publishers, (1994).