[1] S.G. Gorbics, A.E. Nash, F.H. Attix. Thermal quenching of luminescence in six thermoluminescent dosimetry phosphors II Quenching of Thermoluminescence, International Journal of Applied Radiation and Isotopes, 20, (1969), 843-852.
[2] V.E. Kafadar. Thermal quenching of thermoluminescence in TLD-200, TLD-300 and TLD-400 after β-irradiation, Physica B, 406, (2011), 537-540.
[3] M.S. Akselrod, N.A. Larsen, V. Whitley, S.W.S. Mckeever. Thermal quenching of F-center luminescence in Al2O3:C, Journal of applied physics, 84, (1998), 3364-3373.
[4] A. Kadari, D. Kadri. New numerical model for thermal quenching mechanism in quartz based on two-stage thermal stimulation of thermoluminescence model, Arabian Journal of chemistry, 8, (2015), 798-802.
[5] V.S. Kortov, I.I. Milman, V.I. Kirpa, J. Lesz. Thermal quenching of TL in α-Al2O3 dosimetric crystals, Radiation Protection Dosimetry, 65, (1996), 255-258.
[6] M.S. Akselrod, N.A. Larsen, V. Whitley, S.W.S. Mckeever. Thermal quenching of F-center luminescence in Al2O3:C, Radiation Protection Dosimetry, 84, (1999), 39-42.
[7] M. Sohrabi, M. Jafarizadeh, M. Zahedifar. Analysis of kinetics and trapping parameters of LiF:Mg, Ti thermoluminescent dosimeters by general order model, Nuclear Instruments and Methods in Physics Research A, 416, (1998), 446-451.
[8] H.G. Balian, N.W. Eddy. Figure of merit (FOM), and improved criterion over the normalized chi-squared test for assessing goodness of fit of gamma ray spectra peaks, Nuclear Instruments and Methods in Physics Research, 145, (1977), 389-395.