An overview of the cytogenetic methods in biological dosimetry

Author

10.22052/4.1.35

Abstract

The growing use of ionizing radiation in various sectors of industry, medicine, agriculture and research has increased the risk of radiation exposure of staff and people. Ionizing radiation as a strong clastogen can cause different types of DNA damages and chromosomal aberrations. Biological dosimetry, based on the cytogenetic analysis of peripheral blood lymphocytes has a wide application in dose estimation of occupational and accidental radiation exposures, particularly in cases where the physical dosimetry data is not available or is not accurate. Biological dosimetry data assists physicians in the planning of appropriate therapy for exposed persons.  There are different cytogenetic techniques for biological dose assessment using stable or unstable chromosomal aberrations and dose-response calibration curves created by appropriate radiation qualities. At the moment, biological dosimetry based on the analysis of solid stained dicentric chromosomes, has become the main valid biological dosimetry technique for occupational and accidental radiation overexposures. However, there are other cytogenetic techniques for biological dosimetry such as analysis of translocations by FISH technique, micronucleus assay (MN) and Premature chromosome condensation (PCC) test. Other biological indicators have restricted applications or are in research and development stages.

Keywords


[1] IAEA. Cytogenetic Analysis for Radiation Dose Assessment. A Manual Technical reports series no. 405, Vienna, )2001(. [2] IAEA. Cytogenetic Dosimetry: Applications in Preparedness for and Responseto Radiation Emergencies, IAEA-EPR, Vienna, (2011). [6] Y. Suto, T. Gotoh, T. Noda, M. Akiyama, M. Owaki, F. Darroudi, M. Hirai. Assessing the applicability of FISH-based prematurely condensed dicentric chromosome assay in triage biodosimetry. Health Phys.;108(3):371-6, (2015). [7] Clinical Flow Cytometry, Emerging Applications, Ingrid Schmid, , ISBN 978-953-51-0575-6, 214 pages, Publisher: InTech, under CC BY 3.0 license. DOI: 10.5772/2680, (2012). [8] L.A. Beaton, C. Ferrarotto, B.C. Kutzner, J.P. McNamee, P.V. Bellier, R.C. Wilkins. Analysis of chromosome damage for biodosimetry using imaging flow cytometry. Mutat Res.; 756(1-2), )2013). 192-195 [9] F. Darroudi. Use of FISH translocations analyses for retrospective biological dosimetry: How stable are stable chromosome aberrations?. Radiat. Prot. Dosim. 88, (2000). 101-109. [10] J.N. Lucas, A. Awa, T. Straume, M. Poggensee, Y. Kodama, M. Nakano, K. Ohtaki, HU. Weier, D. Pinkel, J. Gray. Rapid translocation frequency analysis in humans decades after exposure to ionizing radiation. Int. J. Radiat. Biol. 62, (1992). 53-63. [11] J.D. Tucker, WF. Morgan, A.A. Awa, M. Bauchinger, D. Blakey, M.N. Cornforth, L.G. Littlefield, A.T. Natarajan, C. Shasserre.et al. PAINT: A proposed nomenclature for structural aberrations detected by whole chromosome painting. Mutat. Res. 347 ,(1995). 21-24. [12] J.R.K. Savage, P. Simpson. On the scoring of FISH painted chromosome exchange aberrations, Mutat. Res. 307, (1994). 345-353. [13] I. Sorokine-Drum, C. Whitehouse , A.A. Edwards. The variability of translocation yields amongst control populations, Radiat. Prot. Dosimetry 88, (2000). 93-99. [14] H. Thierens, A. Vral. The micronucleus assay in radiation accidents. Ann Ist Super Sanita, (2009) 260–264. [15] M.A. Rodrigues, L.A. Beaton-Green, R.C..Wilkins, Validation of the Cytokinesis-block Micronucleus Assay Using Imaging Flow Cytometry for High Throughput Radiation Biodosimetry. Health Phys, 110(1), (2016).29-36. [16] M.A. Rodrigues, L.A. Beaton-Green, B.C. Kutzner. Automated analysis of the cytokinesis-block micronucleus assay for radiation biodosimetry using imaging flow cytometry. Radiat Environ Biophys.; 53(2), ( 2014). 273-282. [17] G.E. Pantelias, H.D. Maillie. The use of peripheral blood mononuclear cell prematurely condensed chromosomes for biological dosimetry. Radiat. Res, (1984). 140-150. [18] R.C. Vyas, F. Darroudi, A.T. Natarajan. Radiation-induced chromosomal breakage and rejoining in interphase-metaphase chromosomes of human lymphocytes. Mutat. Res, (1991). 29-35. [19] F. Darroudi. Detection of total and partial body irradiation in a monkey model : A comparative study ofchromosomal aberration, micronuclei and premature chromosome condensation assays. Int. J. Radiat. Biol, (1998). 207-215. [20] M. Szluinska, A. Edwards, D. Lloyd. Presenting statistical uncertainty on cytogenetic doseestimates.Radiat. Prot.Dosim, (2007). 443-449. [21] J. Deperas, M. Szluinska ,M. Deperas-Kaminska, A. Edwards, D. Lloyd, C. Lindholm, et.al. A freely available PC program for fitting calibration curves in chromosome aberration dosimetry. Radiat. Prot. Dosim, (2007). 115-123. [22] D. Moriña, M. Higueras, P. Puig, E. A. Ainsbury and K. Rothkamm, radir package: an R implementation for cytogenetic biodosimetry dose estimation, Journal of Radiological Protection, V. 35, No.3, (2015). 557-569