مقاله پژوهشی

مجله منابع و ایمنی پتروپ، جلد 8، شماره 3، نوامبر 1388، صفحه 1
تیر 1388/12/13. تاریخ پذیرش مقاله: 1388/10/08

تخمین پارامترهای دزمتری کسپول برای کری ترای I-125 مدل 7611 با استفاده از GATE 8.1

زینب فریوی و پیوند طاهرپور

گروه فیزیک، دانشکده علوم پاوه، دانشگاه گیلان، رشت، گیلان، ایران
*گیلان، رشت، دانشگاه گیلان، دانشکده علوم پاوه، گروه فیزیک، کد پستی: 41337-33469
p.taherparvar@guilan.ac.ir

چکیده

برای اجرای نوع خاصی از پتروپدرمانی است که در آن چشمه پترونترا در داخل بدن بیمار در نزدیکی (و یا در داخل) تومور قرار می‌گیرد. در این بین، تخمین نرخ ذره‌های مختلف بافت‌های محیطی در مرز جنرالیز و مرز مشترک بافت‌های ناهماهنگ در دزمتری تخمین در درون آپ ماحاسی و اعتبارسنجی شده است و در ادامه با GATE مدل 7611 با استفاده از کد شبیه‌سازی مونت‌کارلو در فاکتور آپ محاسیب و اعتبارسنجی شده است و در ادامه توسط GATE و Amersham Health توجه به ساختار مختلف بافت‌های مختلف بدن نسبت به فاکتور آپ تابع مربوط به محاسبات دزمتری به بافت‌های پیچیده، سبب در نوع بافت نرم و بافت‌های بزرگ داده شده شد. مسیرهای پتهای هدف‌دهنده تفاوت محسوسی در جنبی در برخی از بافت‌ها نسبت به فاکتور آپ (که توسط پترونترا ایل است) به طوری که نسبت به بافت‌های نبود بافت‌های دزمتری در بافت‌های پت معرفی می‌شود. این نتیجه‌گیری از مطالعه این مقاله به مدل 7611 GATE، با استفاده از کد GATE و همچنین شبیه‌سازی مونت‌کارلو در بافت‌های دزمتری، تومور قرار دارد.

کلمات‌کلیدی: 1. تری ایل، چشم‌های دزمتری I-125، پترونترا، GATE، پترونترا، کری.

1. مقدمه

در پتروپدرمانی خارجی چشم‌های پترونترا در فاصله‌ای از بدن بیمار قرار گرفته که همین امر سبب دریافت ناشی‌گیری ناخواسته توسط سایر اندیشه‌ها سالم می‌شود. اما در روش‌های رادیوتراپی داخلی (پترونترا) (برای مثال گزینه بافت سالم ناحیه کارگر) به صورت معمول در برای کری ترای I-125 تومور، از پترونترا بلافاصله ناهیده زیادی کاسه می‌شود. که در رسانه‌های سالم باقی می‌ماند و
هدف با دخالت یافته آسیب‌داهنده یا بیمار سیگار می‌گیرد.
1-3) یکی از پیکاربردترین رادیواپتوپ‌های مورد استفاده
در براکتیب 125-یا I-Mبینش. این رادیواپتوپ بک گسیلده
کاملاً با نیمه عمر ۵۷/۶۴ روز می‌باشد. که در ناشی از ان در
فوایل زیاد به چشم به شدت کاهش پیدا می‌کند. بنابراین
به عنوان یک ایزوتوپ مناسب در میان چشم‌های
برای کاربرد محسوب می‌شود و بهترهای ویژه‌ای در درمان
افراد مبتلا به سرطان‌های سر و گردن، سنین، سرویکس،
پروستات، چشم صفر، مری. چشم، و... یافت است.

به منظور شناسایی دقیق چشم‌های براکتیب پیش از
کاربرد بالینی آنها، بهره‌گیری از محاسبات دیجیتالی با دقت
زیاد بر اساس پرتوکل های استاندارد بسیار ضروری است.
از

(4) AAPM (American Association of Physicists in Medicine) کارگردان

ویژه‌ای تحت عنوان TG43-U1 را به منظور بررسی و تعیین
پارامترهای مورد نیاز برای چشم‌های پرتو‌یا مورد استفاده در
برای کاربرد استفاده کرده است.

(2) شکل ۱: کیسول شیمی‌سازی شده توسط کد GATE 8.1

طیف انتزای فوتون 125-یا I-M در شیمی‌سازی‌ها مورد استفاده
قرار گرفت. مطالب دست‌نعلبل GATE می‌باشد.

جدول ۱: طیف چشم‌های پرتو مورد استفاده

<table>
<thead>
<tr>
<th>انرژی فوتون (keV)</th>
<th>(eV)</th>
<th>تعداد فوتون در هر واشی</th>
</tr>
</thead>
<tbody>
<tr>
<td>۷۷/۶۰۰</td>
<td>۴/۶۰۰</td>
<td></td>
</tr>
<tr>
<td>۷۷/۶۰۰</td>
<td>۴/۶۰۰</td>
<td></td>
</tr>
<tr>
<td>۷۷/۶۰۰</td>
<td>۵/۲۰۰</td>
<td></td>
</tr>
<tr>
<td>۷۷/۶۰۰</td>
<td>۵/۲۰۰</td>
<td></td>
</tr>
<tr>
<td>۳۰۹۰۰</td>
<td>۵/۰۰۰</td>
<td></td>
</tr>
</tbody>
</table>

(4) AAPM (American Association of Physicists in Medicine) کارگردان

با توجه به موارد بالینی، در این مقاله ابتدا به ارزیابی و
تعیین پارامترهای دیجیتالی چشم‌های GATE پرداخته شده.

(1) (4) AAPM (American Association of Physicists in Medicine) کارگردان

با توجه به موارد بالینی، در این مقاله ابتدا به ارزیابی و
تعیین پارامترهای دیجیتالی چشم‌های GATE پرداخته شده.

(1) (4) AAPM (American Association of Physicists in Medicine) کارگردان

با توجه به موارد بالینی، در این مقاله ابتدا به ارزیابی و
تعیین پارامترهای دیجیتالی چشم‌های GATE پرداخته شده.
در نقطه مرجع و نام‌بندی در فاصله 2 و با $G(r, \theta, \phi)$ نتایج هنده‌سازی در فاصله 2 و با β. روابط زیر به می‌آید:

$$G(r, \theta) = \begin{cases} \frac{\beta}{L \sin \theta}, & \theta \neq 0 \\ \left(\frac{L^2}{4} \right)^{1/2}, & \theta = 0 \end{cases}$$

(4)

که در آن L طول فعال جسم و R فاصله از مرکز جسم می‌باشد و با β نیز در شکل 2 به نمایش درآمده است [1].

پارامتری دیگر در ارزیابی جسم، نام‌بندی هنده‌سازی و نتایج به‌هم‌آمیختگی جسم باعث آن‌گونگه جابجایی و جذب فوتون‌ها در آن به اطراف جسم می‌باشد، این هنده‌سازی و با معادله 5 بیان می‌شود:

$$F(r, \theta) = \frac{D(r, \theta)G(r, \theta)}{D(r, \theta)G(r, \theta)}$$

(5)

که در آن $D(r, \theta)$ و $G(r, \theta)$ به ترتیب، نتایج و نتایج می‌باشد در فاصله 2 و با β نیز در شکل 2 به نمایش درآمده است. [1].

روش شبیه‌سازی

شبیه‌سازی‌های انجام‌گرفته با استفاده از کد منوی کارانو GATE نسخه 8/1 انجام شده است. کد منوی کارانو GATE قادرمندی به اندازه‌گیری شبیه‌سازی در زمینه پزشکی هسته‌ای به کمک روش Monte Carlo است که کاربردهای ویژه‌ای در تصویربرداری پزشکی هسته‌ای [7] و نیز پزشکی پزشکی است. در این بایان با استفاده از Emstandard مدل فیزیکی فیزیکی استاندارد برای برهمکنش‌های الکترون‌مغناطیسی محصول می‌شود [8].

$$g(r) = \frac{D(r, \theta, \phi)G(r, \theta, \phi)}{D(r, \theta, \phi)G(r, \theta, \phi)}$$

(3)

که در آن، β آنگاهی رای دارد که در فاصله 2 و با β در شکل 2 به نمایش درآمده است. [1].

پارامتری مورد توجه دیگر در ارزیابی کنترل کیفیت جسم، نتایج و باعث آن‌گونگه جابجایی و جذب فوتون‌ها در محیط آبی و در راستای محور عمود بر جسم می‌باشد:

$$S_k = \beta d^2$$

(2)

مقدار β و d مطابق شکل 2 تعیین شده است.

شکل (2): هندسه در نظر گرفته شده برای محاسبات دی‌زمتری [5].
توجه

در اینجا نتایج آزمایش شده به صورت مورد نظر به صورت برای تیسین پارامترهای دیمتری
برای سری پرتابی، بیشتر گزارش های اندازه گیری از توزیع در موارد بالینی، سپس تابع به نسبت متغیری می گردد، بنا برای
تابع برای این اختلاف به وجود آمده، تابع از

<table>
<thead>
<tr>
<th>نمره</th>
<th>مقدار طالع</th>
<th>فاصله از مرکز (cm)</th>
<th>شارکس (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>20</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/1</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/2</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/3</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/4</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/5</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/6</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/7</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/8</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/9</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/10</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/11</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/12</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/13</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
<tr>
<td>1/14</td>
<td>10/46</td>
<td>-</td>
<td>1/48</td>
</tr>
</tbody>
</table>

است. همانطور که در شکل 3 مشاهده می‌شود، تواناق خوبی بین تابع‌های جانبی از GATE و سابر پژوهش‌های صورت گرفته در این زمینه وجود دارد. نتایج آزمایش نسبی این

همچنین به منظور اعتبارسنجی داده‌ها، مقایسه تابع جانبی از

این شیب‌سازی با نتایج رودریگز و همکارانش (1). ریورت و

همکارانش (1) و ریورت (12) در شکل 3 نشان داده شده.
نامه‌سنجی چشمه 1-125 Mدل 1711 در زواياي مختلف و در فواصل شعاعی 0.1, 0.2, 0.3, 0.4 و 0.5 سانتی‌متر محاسبه شد که نتایج حاصل از آن در جدول 3 تابع شده است.

شکل (3): تمودار تابع در شعاعی در این تحقیق و مقایسه با نتایج سایر پژوهش‌ها.

جدول (3): نامه‌سنجی چشمه‌های دائم توسط کد GATE 125-1-1117

<table>
<thead>
<tr>
<th>r(cm)/0°</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.742</td>
<td>0.753</td>
<td>0.764</td>
<td>0.775</td>
<td>0.786</td>
</tr>
<tr>
<td>10</td>
<td>0.777</td>
<td>0.788</td>
<td>0.799</td>
<td>0.810</td>
<td>0.821</td>
</tr>
<tr>
<td>20</td>
<td>0.806</td>
<td>0.817</td>
<td>0.828</td>
<td>0.839</td>
<td>0.850</td>
</tr>
<tr>
<td>30</td>
<td>0.835</td>
<td>0.846</td>
<td>0.857</td>
<td>0.868</td>
<td>0.879</td>
</tr>
<tr>
<td>40</td>
<td>0.864</td>
<td>0.875</td>
<td>0.886</td>
<td>0.897</td>
<td>0.908</td>
</tr>
<tr>
<td>50</td>
<td>0.893</td>
<td>0.904</td>
<td>0.915</td>
<td>0.926</td>
<td>0.937</td>
</tr>
<tr>
<td>60</td>
<td>0.922</td>
<td>0.933</td>
<td>0.944</td>
<td>0.955</td>
<td>0.966</td>
</tr>
<tr>
<td>70</td>
<td>0.949</td>
<td>0.960</td>
<td>0.971</td>
<td>0.982</td>
<td>0.993</td>
</tr>
</tbody>
</table>

برای تابع برای مقایسه نامه‌سنجی چشمه بده دسته‌بندی از داده‌های روکرگر و همکارانش [1]. روکرگر و همکارانش [4] و روکرگر [12] در 4 فاصله شعاعی 0.1, 0.2, 0.3 و 0.5 سانتی‌متر در شکل 4 ارائه شده است. نتایج نشان می‌دهد که میانگین اختلافات تابع نامه‌سنجی حاصل از این مطالعه در مقایسه با نتایج روکرگر و همکارانش [1]. روکرگر و همکارانش [4] و روکرگر [12] به ترتیب معادل با 0.77/0.34/0.25/0.26/0.20 سانتی‌متر/0.26/0.24/0.22 سانتی‌متر/0.20 سانتی‌متر/0.19 سانتی‌متر.
حاصل از فاکتور آب مقایسه شد. نتایج تابع در شما دیگر در جدول ۴ آرا شده است.
با توجه به مقایسه تابع ناحیه‌گردی شده مدل ۱۲۵ با ناحیه سایر پژوهشهای در فاصله (۱, ۳, ۱) cm و (۲, ۴) cm جدول (۴): نتایج در شما می‌باشد که GATE تابع سطحی در جدول های مختلف.
در شکل 5-الف به مقیاسه این داده‌ها با نتایج حاصل از فاکتور آب پرداخته‌ایم. در شکل 5-ب نیز نتایب شاخص ذخیره آب ماهیچه، ریه، سینه، مغز و فاکتور نرم با استفاده از تیها و اندازه‌گیری شاخص‌های مختلف، به تایب شاخص ذخیره آب ماهیچه، ریه، سینه، مغز و فاکتور نرم با استفاده از فاکتور آب ارائه شده است. همان‌طور که در شکل 5-ب مشاهده می‌شود، به دلیل آنکه بافت چربی فاکتور دارای فاکتور سازنده‌ای با درصد وزنی باینی تابع به فاکتور آب است، در فاصله کچکتر 1 اختلاف نسبی بیشینه‌ای در حدود 11/5% نسبت به فاکتور آب را ایجاد خواهد کرد و با افزایش فاصله از مرکز جسم به 9/4% نسبت به فاکتور آب ریه و 7/7% نسبت به فاکتور آب سایر ماهیچه‌ها به طوری که در فاصله 5 cm به 0/56 درصد نیز خواهد رسید. بافت ماهیچه دارای فاکتور سازنده نسبت به بافت ماهیچه است و اختلاف نسبی کمتری را نسبت به فاکتور آب نشان می‌دهد.

شکل (5): الف) مقایسه نتایج فاکتور دارای فاکتور سازنده از مقیاسه GATE در بافت‌های چربی، سینه، ماهیچه، ریه، مغز، بافت‌های نرم و فاکتور آب.

نتیجه‌گیری

به دلیل محدودیت‌های بسیار زیاد استفاده از روش تجربی برای تعبیر دقیق پارامترهای دیمترا کیسوس‌های پاراکسیمی، در این مقاله به بررسی پارامترهای دیمترا کیسوس پاراکسیمی GATE که ممکن که نسخه 18/5 لایه‌ای و GATE I-125 مدل 111W به کمک کد GATE

نتایج بدست‌آمده با نتایج حاصل از سایر پژوهش‌ها مقایسه شده است. مقایسه داده‌ها به دست آمده از کد GATE

نتایج گسترده
دانشگاه پژوهش‌های دیگر تطبیق بسیار این نتایج را نشان می‌دهد که با توجه به پایین‌ترین انرژی چشم‌های 251-I و تغییرات شدیدی در ناشی از آن در فواصل دور از چشم‌های توان پارامترهای دزمیری مطرح شده توسط AAPM این چشم‌های پارامتری با استفاده از آن که با دقت بالایی مدل‌سازی کرده‌اند، برای بررسی اختلاف نسبی میان پارامتر تابع در شعاع در بین‌های مختلف و فناوری آب به محاسبه این پارامتر در بافت‌های چربی، ماهیچه، ری، مغز، و بافت مختلف آن و سیستم نیز در شدت بیشتر، نتایج به دست آمده با حالتی که از محیط آب برای تعیین پارامتر استفاده می‌شود، مقایسه‌شا است. به علت تفاوت در چگالی و ترکیبات سایت‌های این گام

5 مراجع