Volume 6, Issue 3 (Iranian Journal of Radiation Safety and Measurement, Proceeding 2018)                   IJRSM 2018, 6(3): 23-28 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mahdian Manesh M H, Faghihi R. Calculation of airkerma conversion factor to personal dose equivalent at various depths using the Monte Carlo Code GATE. IJRSM. 2018; 6 (3) :23-28
URL: http://rsm.kashanu.ac.ir/article-1-378-en.html
Shiraz University
Abstract:   (2720 Views)

Several studies have been done with the aim of improving the quality of the radiation protection measurement in radiology and nuclear medicine. Among  different subjects which are capable to be considered in this area, the measurement of the operational quantities of protection against the radiation ,such as, personal dose equivalent ,HP(d), at different depths (d=0.07mm, 3mm, 10mm) is an important issue. This subject was became more important after the decision of ICRP in terms of decreasing the annual dose limit to 20mSV per year. Nowadays the calibration of individual dosimeters in photonic fields are being done with proper conversion coefficients by the measurement of the airkerma and convert to the personal dose equivalent in desired depth. For this reason, in order to convert airkerma to personal dose equivalent in depth of (d=0.07mm, 3mm, 10mm) for X ray radiation between 40 KeV and 140 KeV, this essay has calculated a list of conversion coefficients by the Mont Carlo modeling and using Gate simulated code. After that a comparison between the achieved results and the results which published by international standard organization (ISO) was performed.

Full-Text [PDF 327 kb]   (864 Downloads)    
Type of Study: Research | Subject: Special

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Iranian Journal of Radiation Safety and Measurement

Designed & Developed by : Yektaweb