Volume 4, Issue 3 (9-2016)                   IJRSM 2016, 4(3): 49-55 | Back to browse issues page

XML Persian Abstract Print


Abstract:   (4944 Views)

The object of this research is the investigation of carbon nanotube (CNT) distribution effect on electrical conductivity of polymer-CNT composite as dosimetry response of this system. Thus, electrical conductivity of this composite was simulated for aligned, homogenous, and agglomerated distributions in 2D, and 3D situations. The results of simulation were compared and validated by experimental data in the literature. For 3D distribution of CNTs in polymer matrix, Monte Carlo method and excluded volume approach were utilized. The results of 3D simulation showed that electrical conductivity of polymer-CNT composite was depended on dispersion angle of CNTs in polymer matrix. The results of 2D simulation showed that more agglomeration of CNTs in polymer-CNT composite was leading to sever reduction of electrical conductivity. In the other hand, with transition of agglomeration to homogeneous dispersion of CNTs into polymer matrix, increasing of electrical conductivity of the composite was observed.

     
Type of Study: Research | Subject: Special