چکیده
در این مقاله، دستگاه کالیبریمتر گرافیتی که منظور کالیبراسیون باریکه الکترونیکی حاوی، از تشکیل‌دهنده درمانی در محدوده دو جاذبه پایین وکار می‌رود. با استفاده از محاسبات EGS4 شیمی‌سازی شد. بررسی توزیع در باریکه الکترونیک در داخل آن محاسبه و اثر پارامترهای مانند فضاهای قلب کالیبریمتر، فاصله بین دستگاه، فضاهای شکاف و این اتفاق قلب، رفتار شکاف‌های بین قلبی و ابعاد پنجره باریکه الکترونیک را مقدار با جدید و قلب کالیبریمتر مورد بررسی قرار گرفت. سرانجام پارامترهای بهینه حاصل بالاترین مقدار جدیدی در قلب کالیبریمتر که موجب افزایش قدرت تفکیک می‌گردد، محاسبه شد. نتایج حاصل از این شیمی‌سازی با نتایج تجربی منشأکن توسط دیگر پژوهشگران، نتایجی مشابه و تطابق را نشان داد.

کلید واژه‌ها: کالیبریمتر گرافیتی، پرتودرمانی، شتاب‌دهنده الکترونیک، کد EGS4

1. مقدمه
در پرتودرمان، اطمینان از دریافت درمان بسیار مهم می‌باشد. این آزمایش‌های کاربردی مورد اشتیاق سازندگان از این روش هستند. این کاردیولوژینیکی یا کالریمتر گرافیتی به موجب افزایش قدرت تفکیک الکترونیک مورد بهره‌برداری قرار می‌گیرد. کالریمتر گرافیتی به عنوان یک میکروکنترلر در این روش کاربرد یافته و دستگاه‌های الکترونیک در محدوده مختلف مصرف می‌شوند.

2. آشنایی با کد EGS4
کد کالریمتر EGS4 برای ایجاد انواع مختلفی از دستگاه‌های الکترونیک ذکر شده‌است که برای استفاده درینیکی و درمانی از دستگاه‌های الکترونیک و درمانی استفاده می‌گردد. در گرافیتهای ساخته شده مورد استفاده قرار می‌گیرند. در کلیکه‌های پرتودرمانی کالریمتر گرافیتی بسیار سبب قلبی شدن آسانی کاربرد بیشتر دارد. این کالریمتر به منظور دیماکها در مجاورت درمانی در محدوده جدیدی از طریق جدیدی کاربردی است. کاربرد این کالریمتر مناسب از روش‌های الکترونیکی و درمانی است.
3. ساختار و طراحی کالریمتر گرافیتی

3.1. اندازه‌گیری در جذب شده

کالریمتر یک الکترونیکی شامل یک کالریمتر گرافیتی (یا از مکمل و نمای کناری) است. مدل PEGS4 در دیزاین‌بازیکه کاملاً با کاربردی استفاده می‌شود. این کالریمتر از میزان انرژی حرارتی، میزان انرژی نفوذی و میزان انرژی بهره‌برداری در نظر گرفته شده است. در جذب شده، دمای استنلس استیل (D) مناسب است برای حرارتگیری در جذب شده.

\[
\Delta T = C \cdot \Delta G
\]

در اینجا \(C\) نرخ گرمایی ویژه و \(\Delta G\) میزان حرارتی در جذب شده است. این نتایج در مقیاس از آب دارای خواص تاسیسی بهبود می‌شاند. نرخ گرمایی ویژه تقریباً 4 برای کالریمتر گرافیتی جامد. در همراهی با استفاده از محفظه‌های خاص، می‌تواند بهبودی در کارایی در نتیجه یک کاسه کالریمتر گرافیتی در برابر جذب یک کاسه از آب داری استفاده گردد.

3.2. ساختار یک کالریمتر گرافیتی نوی عکس از کالریمتر گرافیتی در پایین از دو بخش بدن اصلی و باندکا اصلی کار کننده در دماهای میانی است. بدن اصلی پیک کالریمتر گرافیتی شامل یک لوله، یک کالریمتر گرافیتی است که طرح یاد آن در شکل (۱) نمایش داده شده است. چسب کالریمتر از یک چسب بسته به شکل (۱) نمایش داده شده است. چسب کالریمتر از یک چسب بسته به شکل (۲) نمایش داده شده است. چسب کالریمتر از یک چسب بسته به

\[
20 \text{ mm} \times 20 \text{ mm} \times 2 \text{ mm} \times 2 \text{ mm} \times 2 \text{ mm}
\]

به قدرت 1000 و طول 3 گیاهی است.
2.4 بررسی توسعه ذر در محل قرارگیری قلب کالریمتر

کالریمتر گرافیتی که در بخش پیشین، جذبیت‌های طراحی آن ذکر شد، توسعه کد EGS4 شبیه‌سازی شده و نتایج آن با صوت مختصر تغییرات در این قسمت آمده است. هم‌هم محاسبات برای بارکت

الکترون‌ها با انرژی 16 MeV با دنرفکب هم تغییرات مربوط می‌یابی شکل برای بارکت الکترون‌های فروش به ایجاد 100 cm\(^2\) فضای فراغی با ایجاد 100 cm\(^2\) فضای فراغی.

1.4 اثر فاصله جسم و ابعاد بارکت بر مقادیر ذر

شکل (2) تغییر مقادیر ذر در قلب کالریمتر بر حسب تغییر از فاصله جسم از سطح کالریمتر (در محیط آزمایشگاه) با نمايش می‌دهد. همان‌گونه که نشان داده، برای به دست آوردن یک اندازه کنترلی دقیق بهتر است که فاصله بین بارکت و محیط 100 cm\(^2\) باشد.

شکل (2) نشان می‌دهد که افزایش ابعاد بارکت، به دلیل افت دانشی جربان الکترون‌ها موکب کاهش می‌یابد. از جهت دیدگاه می‌توان به درک بیشتری را با نمودار داشت. در نتیجه، قطعه بارکت الکترون‌ها به صورت نیاز مشاهده نمی‌شود. تغییرات زیاد مبتنی در هنگام کشش‌دهی باعث محیط‌شناسی قلب بارکت می‌شود. الکترون‌ها در آب یا بافت، تغییرات دوم‌ری یا افزایش تعداد تکرارها در محاسبات، این نمای خواهد رفت.
مشاهده سایر ذرات باردار، اثر خوش را به صورت تجربی یاد بود من به دست می‌دهم. بنابراین، ابزاری از جهت جدی به محقق امر کنندگی می‌باشد. تمایل فیزیک بارکه‌های مختلف از روی مشخصات توسعه دیده و پرکارگری دستکاهی کالریمتر دارد. در حقیقت واردی واریز فیزیک یا با استفاده از این توسعه ملاحظه می‌شود که تعداد حدودی 10 در جدیپ تقریباً یکتی می‌باشد که بدل کشیدن چگالی پلی استرکتیو ناحیه‌های و دلالا انتخاب محل قلب کالریمتر در این فاصله، تغییر جدایی در پاسخ ایجاد نخواهد کرد.

![شکل ۶ (ا) توزیع دندان اول و دوم بر رابطه الکترونها](image1)

![شکل ۶ (ب) توزیع دندان دوم بر رابطه الکترونها](image2)

شکل ۷. توزیع در جهت عمود بر بارکه الکترونها

شکل ۸ (آ) کاهش اثر ضخامت قلب بر مقدار از جدید

شکل ۸ (ب) اثر ضخامت قلب بر مقدار از جدید

شکل ۸ (ای) مقدار توسعه واریز در جدید قلب در اندازه دیده می‌باشد.

شکل ۸ (ب) مقدار توسعه در جدید قلب در اندازه دیده می‌باشد.

شکل ۸ (ای) مقدار توسعه در جدید قلب در اندازه دیده می‌باشد.

شکل ۸ (ب) مقدار توسعه در جدید قلب در اندازه دیده می‌باشد.

شکل ۸ (ای) مقدار توسعه در جدید قلب در اندازه دیده می‌باشد.

شکل ۸ (ب) مقدار توسعه در جدید قلب در اندازه دیده می‌باشد.

شکل ۸ (ای) مقدار توسعه در جدید قلب در اندازه دیده می‌باشد.

شکل ۸ (ب) مقدار توسعه در جدید قلب در اندازه دیده می‌باشد.
مورد مطالعه قرار گرفته است. نتایج حاکی از این است که انتخاب این صفحات با ضخامت 1mm موجب حصول بیشترین در جذبی شده که خود افزایش پاسخ كالریمتر را دریماد.

شکل 9: تغییرات در جذبی كالریمتر در مقابل ضخامت شکاف هوای اطراف

شکل 10: اثر ضخامت صفحات گرافیتی بر میزان در جذبی قلب كالریمتر

5. نتیجه‌گیری

استفاده از روش شبیه‌سازی توسط کد EGS4 این امکان را فراهم می‌سازد که پیش از ساخت كالریمتر و صرف هزینه، بهترین پارامترها و ابعاد برای حصول بالاترین مقدار در جذبی در قلب كالریمتر را که موجب افزایش مبادلات در ناحیه کربن، محاسبه کرده و نتایج حاصل شبیه‌سازی با نتایج حاصل از تجربیات مشابه مقایسه و تجزیه و تحلیل شده اجرا می‌شود. انتخاب پارامترهای صحیح در کد مورد استفاده است.

شده و در ضخامت‌های بیشتر، مقدار تقریباً ثابت می‌ماند. برخی نشان‌داده که در نمونه‌هایی که نظر به شبیه‌سازی این نوع تعداد محسوس شد که علت بروزگی گذشته نیست. اگر می‌توان در قطب به افزایش جذبی از انتظار زمان

اجرا برای همیشه می‌شود.

4.4. پوشش اطراف قلب كالریمتر

اگر بارکاری الکترونی فرودی یک توزیع زاویه‌ای پهن باشد، استفاده از یک حلقه احاطه‌کننده قلب موشک به پوشش، موجب پیش‌بینی شرایط تعادل بین دو دسته الکترون می‌شود، که به‌طور مالی روی دیواره جانی قلب فرود می‌آید و الکترون‌هایی که این دیواره می‌گردد، از طرف دیگر، وجود این حلقه به عنوان حلالی برای قلب، می‌گردد و این می‌باید تاوند، می‌شود، زیرا اگر می‌باشد به‌طور پیوست خوب ثابت دامی پوشش از دامی قلب، عمل به شیوه ادیب‌بانکی می‌تواند ثبت یابد. در این قسمت، تغییر مقدار در جذبی در قلب كالریمتر بر تغییر ضخامت‌های اطراف قلب و پوشش گرافیتی و تغییر ضخامت صفحات گرافیتی که قبل و پس از قلب کارگذاری شده، مورد مطالعه قرار گرفته است. نتایج محاسبات حاصل از تغییر ضخامت شکاف هوای اطراف قلب و تأثیر آن بر میزان در جذبی در قلب، در شکل (9) آورده شده است. پوشش گرافیتی مقدار در جذبی در (95/5) شکاف هوا مشابه شد که کاملاً منطبق بر نتایج حاصل از است. نتیجه‌گیری است (6).

تهمینی، در شکل (10) تغییر مقدار در جذبی در قلب كالریمتر بر اثر تغییر ضخامت صفحاتی که قبل و پس از قلب کارگذاری می‌شود.

