آزمایش حفاظ سامانه تصویربرداری PET/CT

مونت کارلو

فرشته غلامی، مجتبی شماسیان فلسفی‌دان و احسان علی‌یگی

دانشکده مهندسی آنرژی و فیزیک، دانشگاه صنعتی امیرکبیر، تهران، ایران

pysham@aut.ac.ir

چکیده

با توجه به پیشرفت روزافزون سامانه‌های تصویربرداری، شیمی و فیزیک در سطح جهانی PET/CT نیاز به حفاظت در برای پروتکل بان‌که می‌تواند. SPECT/CT سامانه‌های جدید و پرگستن‌ده‌ای برای نمایش کاهش که بهترین برای پروتکل دارد. امروز جدی به حساب می‌آید. اطلاعات از اینکه در دریافتی از حد مجاز تجاری نکند، محور طراحی و محاسبات حفاظت سامانه‌های تصویربرداری و درمانی است. در این تحقیق، وضعیت حفاظت موجود MCNPX در بیمارستان شریعتی تهران، برای تأییدات تصویبرپارداری SPECT/CT برای دریافت کردن، انتظار این سیستم با استفاده از روش محاسباتی MCNPX تحت خدمات در ترخ دار مقدار در ترخ دار 787/2 E-03mSv/Week به قیمت میانگین 77mCi با توجه به اینکه این مرکز روزانه 12 بیمار را با اندازه کننده شده ماشینه‌ای 25/9 می‌تواند. نتایج این صدها 0/05 E-06mSv/Week شیب‌سازی می‌دهد که کاهش یافته باید به علت حفاظات تصویربرداری از ده سال دیگر است.

کلیدواژه‌ها: حفاظت، نظر داده، بیمارستان شریعتی، MCNPX

پخش‌گذاری تابش پوزیترون پیکی از روش‌های تصویربرداری مولکولی است که تصویر‌برداری اطلاعات عملکردی از بدن انسان را فراهم می‌آورد. در حال حاضر، این سامانه‌های تصویربرداری به‌عنوان یکی از قدرتمندترین ابزار برای تشخیص و سطح‌یابی تعداد زیادی از انجا سطحان مورد استفاده قرار می‌گیرد.

1. مقدمه

بررسی سیستم پوزیترون‌پیکی از روش‌های تصویربرداری مولکولی است که تصویر‌برداری اطلاعات عملکردی از بدن انسان را فراهم می‌آورد. در حال حاضر، این سامانه‌های تصویربرداری با حس‌پذیری نسبی، سطح‌یابی و سطح‌یابی به‌منظور پیش‌بینی این نوع سطح‌یابی مورد استفاده قرار می‌گیرد.

2. نتایج

بنیان تصویربرداری PET تهیه کنترل و اصلاح مسایل PET/CT نرخ پوزیترون در مسایل PET/CT

References

[1] Scan.
2. طراحی حفاظ در شیب‌سازی

2.1. تجهیزات

تجهیزات PET/CT در این کار شامل سه ناحیه انتقال تریوت:F 18، انتقال انظار و انتقال برای نگهداری و تریوت پرتوژارازی در F 18. در این CT، می‌توان به سه سر بهره و فنی در انتقال تریوت، راه اندازی یک دور را به‌دست آمده است. در این سلول، برای به‌دست آوردن تعمیم مطلوب در نظر گرفته شده است.

2.2. حفاظ

حتی برای شده بر اساس داده‌ها حفاظ موجود در این مجموعه مورد نیاز برای CT اداره کننده و همکاران تریوت F 18 مورد نیاز برای کاربران ایرانی که خود تولید می‌کنند. نیمنعم که این CT دارای این CT، سه ناحیه انتقال نواحی F 18 می‌توانند، اما به‌طور عمومی این CT می‌توانند دارای این CT، لازم به پوشش است.

1. PET/CT

1.1. شریعتی تهیه

پیمان‌سازی شریعتی تهیه در شیب‌سازی تجهیزات PET/CT سه شریعت تهیه شده است. شریعت F 18 می‌تواند در انتقال متفاوت در این مجموعه قرار دهند. در این CT، برای یک شریعت همگون برای این پرتوژارازی از دو یا یک سر کروی که آن‌ها به بیمار در دسترس ذخیره است. ناحیه انتقال تریوت، شریعت F 18 صورت 2 و 8 سرکرجی گرای شده است.

1.2. سامانه تکامل

ده کره‌ها می‌توانند با کمک CT و PET/CT این CT را به‌صورت پسخوردار کند. این CT را به‌صورت پسخورداری CT باید CT نمایش داد و PET/CT در CT دو همایش‌گرایی بالایی 51keV یک میلی‌سیمی‌فیلتر باید شکل داشته باشد.

1.3. چشمی

در شیب‌سازی تجهیزات PET/CT به پیمان‌سازی شریعتی و/or تهیه و/or تهیه و/or تهیه شده است. این CT می‌تواند در انتقال متفاوت در این MUP pet/CT قرار دهند. در این CT، برای یک شریعت همگون برای این پرتوژارازی از دو یا یک سر کروی که آن‌ها به بیمار در دسترس ذخیره است. ناحیه انتقال تریوت، شریعت F 18 صورت 2 و 8 سرکرجی گرای شده است.

2.2. ناحیه

برای محاسبه نرخ ذخیره F 18 ناحیه یک در این CT می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت همگون برای این پرتوژارازی از دو یا یک سر کروی که آن‌ها به بیمار در دسترس ذخیره است. ناحیه انتقال تریوت، شریعت F 18 صورت 2 و 8 سرکرجی گرای شده است.

2.3. چشم

در شیب‌سازی TEP/CT، محاسبه نرخ ذخیره F 18 ناحیه یک در این CT می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت همگون برای این پرتوژارازی از دو یا یک سر کروی که آن‌ها به بیمار در دسترس ذخیره است. ناحیه انتقال TEP/CT می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت همگون برای این پرتوژارازی از دو یا یک سر کروی که آن‌ها به بیمار در دسترس ذخیره است. ناحیه انتقال TEP/CT می‌تواند در انتقال MNPQX برای TEP/CT، پرتوژارازی می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت همگون برای این پرتوژارازی از دو یا یک سر کروی که آن‌ها به بیمار در دسترس ذخیره است. ناحیه انتقال TEP/CT می‌تواند در انتقال MNPQX برای TEP/CT، پرتوژارازی می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت همگون برای این پرتوژارازی از دو یا یک سر کروی که آن‌ها به بیمار در دسترس ذخیره است. ناحیه انتقال TEP/CT می‌تواند در انتقال MNPQX برای TEP/CT، پرتوژارازی می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت همگون برای این پرتوژارازی از دو یا یک سر کروی که آن‌ها به بیمار در دسترس ذخیره است. ناحیه انتقال TEP/CT می‌تواند در انتقال MNPQX برای TEP/CT، پرتوژارازی می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت H و/or تهیه و/or تهیه شده است. این CT می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت H و/or تهیه و/or تهیه شده است. این CT می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت H و/or تهیه و/or تهیه شده است. این CT می‌تواند در انتقال MNPQX برای TEP/CT، پرتوژارازی می‌تواند در انتقال متفاوت در این CT قرار دهند. در این CT، برای یک شریعت H و/or تهیه و/or تهیه شده است. این CT می‌تواند در انتقال MNPQX برای TEP/CT، پرتوژارازی M

1. Scanner
در این تریک به حساب می‌آید. فعالیت محاسبه‌شده برای 2 و 8 پیش در روز، فاصله زمانی یک ساعت بین زمان تریک و انجام پیش در جدول 1 آمده است.

جدول 1: فعالیت تریکی برای 2 و 8 پیش در روز در بیمارستان شریعتی تهران

<table>
<thead>
<tr>
<th>هزینه (mCi)</th>
<th>فعالیت (mCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

3. شیوه‌سازی مجموعه PET/CT

1.3. انتقال تریک

1.3.1. دیوار انتقال تریک

در بیمارستان شریعتی، پرتوگاری به صورت روزنه متناسب با نیاز هر روز به این مرکز متوقف می‌شود. این مرکز در هر روز 2 پیش به فاصله یک ساعت انجام می‌دهد. پرتوگاری سعی صحیح به مرکز می‌رسد و میزان پرتوگاری مورد نگاه که هر صبح به این مرکز متوقف می‌شود، یاد باید بنداند. یاد که هر بیمار

مقدار 1 mCi مقدار شد. پرتوگاری در ساعت 11 صبح (y) مقدار

اقتصادی (mCi) مقدار این پرتوگاری را نشان می‌دهد.

بیمار او: اگر فرض کنیم که تریکی بیمار اول دقیقاً ساعت 10 mCi صبح صورت می‌گیرد، فعالیت تریکی 10 mCi است.

A0 = 10 mCi

بیمار دوم از آنجا که پرتوگاری ساعت 9 صبح به مرکز می‌رسد

و تریک ساعت 10 صبح برای بیمار صورت می‌گیرد، نا یک سعی به عنی ساعت 11 صبح آن پیش آن پرتوگاری و با در نظر

گرفتن نیم عمر المان دیگری (ساعت 9 صبح)FGD سعی

گرفتن نیم عمر المان دیگری (ساعت 9 صبح)FGD

برای بیمار دوم بیشتر از 10 mCi تا پس از گذشته 1 ساعت

و رسیدن به زمان تریک، مقدار آن 10 mCi

صبح - t = 1 hr = 60 min

A = A0e^{-k}\frac{ln2}{100min} 

\frac{10mCi}{A0} = \frac{A0e^{-k}\frac{100min}{ln2}}{60min} 

10mCi = \frac{A0e^{-k}\frac{100min}{ln2}}{60min} \times 0.6825305 \rightarrow \frac{A0}{10mCi} = \frac{0.6825305}{14.5936mCi} 

به همین ترتیب، با توجه به ساعت پیش برای بیمار سوم

و چهارم، مقدار فعالیتی که ساعت 9 صبح به آزمایشگاه منتقل

می‌شود، برای این دو بیمار به شرح زیر است:

بیمار سوم: 274589 mCi

بیمار چهارم: 3184927 mCi

به‌همین‌طور، کل فعالیت موجود در آزمایشگاه در ساعت 9

صبحث تقریباً 77 mCi است که مبنا محاسبه و قدرت چشمی

در انتقال تریک به حساب می‌آید. فعالیت محاسبه‌شده برای 2 و 8 پیش در روز، فاصله زمانی یک ساعت بین زمان تریک و انجام پیش در جدول 1 آمده است.

جدول 1: فعالیت تریکی برای 2 و 8 پیش در روز در بیمارستان شریعتی تهران

<table>
<thead>
<tr>
<th>هزینه (mCi)</th>
<th>فعالیت (mCi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

3. شیوه‌سازی مجموعه PET/CT

1.3. انتقال تریک

1.3.1. دیوار انتقال تریک

در بیمارستان شریعتی، پرتوگاری به صورت روزنه متناسب با نیاز هر روز به این مرکز متوقف می‌شود. این مرکز در هر روز 2 پیش به فاصله یک ساعت انجام می‌دهد. پرتوگاری سعی صحیح به مرکز می‌رسد و میزان پرتوگاری مورد نگاه که هر صبح به این مرکز متوقف می‌شود، یاد باید بنداند. یاد که هر بیمار

مقدار 1 mCi مقدار شد. پرتوگاری در ساعت 11 صبح (y) مقدار

اقتصادی (mCi) مقدار این پرتوگاری را نشان می‌دهد.

بیمار او: اگر فرض کنیم که تریکی بیمار اول دقیقاً ساعت 10 mCi صبح صورت می‌گیرد، فعالیت تریکی 10 mCi است.

A0 = 10 mCi

بیمار دوم از آنجا که پرتوگاری ساعت 9 صبح به مرکز می‌رسد

و تریک ساعت 10 صبح برای بیمار صورت می‌گیرد، نا یک سعی به عنی ساعت 11 صبح آن پیش آن پرتوگاری و با در نظر

گرفتن نیم عمر المان دیگری (ساعت 9 صبح)FGD سعی

گرفتن نیم عمر المان دیگری (ساعت 9 صبح)FGD

برای بیمار دوم بیشتر از 10 mCi تا پس از گذشته 1 ساعت

و رسیدن به زمان تریک، مقدار آن 10 mCi

صبحث - t = 1 hr = 60 min

A = A0e^{-k}\frac{ln2}{100min} 

\frac{10mCi}{A0} = \frac{A0e^{-k}\frac{100min}{ln2}}{60min} 

10mCi = \frac{A0e^{-k}\frac{100min}{ln2}}{60min} \times 0.6825305 \rightarrow \frac{A0}{10mCi} = \frac{0.6825305}{14.5936mCi} 

به همین ترتیب، با توجه به ساعت پیش برای بیمار سوم

و چهارم، مقدار فعالیتی که ساعت 9 صبح به آزمایشگاه منتقل

می‌شود، برای این دو بیمار به شرح زیر است:

بیمار سوم: 274589 mCi

بیمار چهارم: 3184927 mCi

به‌همین‌طور، کل فعالیت موجود در آزمایشگاه در ساعت 9

صبحث تقریباً 77 mCi است که مبنا محاسبه و قدرت چشمی
۲۳.۴.۲ دیوار ایجاد پوشش
پس از اینکه بیمار به‌همضد یک صفحه در اتاق انظار، منظور ۱۰۰ دقیقه از پرتویار و پخش شود، بدیل‌نی‌بی‌سی‌می‌سپاره ۳۰/۳ می‌باشد. پس بیمار به تمرین عادتی می‌شود. در اتاق پوشش بیمارستان یک صفحه‌تی‌گر می‌باشد. ابعاد اتاق پوشش متنقل می‌شود تا تصویربرداری صورت گیرد. ابعاد اتاق پوشش مركزی BIM/CT بیمارستان شریعتی پوشش زیر است: ۶۱/۷۸×۲۸۰×۲۴۰ cm
ضخامت اتاق پوشش ۲۸ cm و بوده که مشکل از ۲ کانی گریزیت.

۲۳.۴.۳ درب ایجاد پوشش
اتاق پوشش در درب برج می‌باشد که بیمارستان اتاق انظار تشکیل دارد. دیوار ایجاد اتاق تصویربرداری بیمارستان راهرو و بیمارستان شریعتی پوشش در روز، برای تغییر ۱/۷ و جدول ۲ نشان داده شده است.

مکانی: تجهیز‌هایی از اتاق تصویربرداری در برج MCNP Visual برج ۴ پوشش

۲۳.۳ اتاق پوشش
۲۳.۳.۲ درب اتاق انظار
در اتاق پوشش بیمارستان پس از اتصال بطور الکترونیکی باز می‌شود و به‌طور کششی در مجوا می‌باشد پوشش ۴۶ سانتی‌متر قرار دارد. ابعاد در ۱۲۴/۱۰،۱۰۵،۹۸،۷۸،۵۸،۳۸،۱۸،۰۸،cm

۲۳.۳.۱ دیوار اتاق پوشش
پس از اینکه بیمار به‌همضد یک صفحه در اتاق انظار، منظور می‌باشد ۱۰۰ دقیقه از پرتویار و پخش شود. بدیل‌نی‌بی‌سی‌می‌سپاره ۳۰/۳ می‌باشد. پس بیمار به اتاق پوشش متنقل می‌شود تا تصویربرداری صورت گیرد. ابعاد اتاق پوشش مركزی BIM/CT بیمارستان شریعتی پوشش زیر است: ۶۱/۷۸×۲۸۰×۲۴۰ cm

۲۳.۲ درب اتاق انظار
در اتاق پوشش ۴۰ cm ضخامت در طرفین، ۲۲/۷ سری و مابقی بین است.

۲۳.۱ تاثیر شیب‌سازی
با توجه به اینکه هدف این مطالعه بود استودن قدر مقدار ضخامتی بوده که در آن حد می‌باشد [۵] و ۱۰۰/۸۸/۲۰۰ mSv/Week ر轨道交通، نیز می‌باشد برای مقدار کنترلی و غیرکنترلی [۱] [۱] حفاظت کاربردی برای منطقه غیرکنترلی PET/CT بیمارستان شریعتی پوشش مجموعه
بر اینجا نیز ایدئال روند تضعیف مواد بکارفه در ساخت حفاظت نیز نشان داده شود.

۲۳.۱.۳ استفاده از شیب‌سازی مجموعه
بیمارستان شریعتی تهران برای ۳۰ و ۸ پوشش در روز، برای نواحی مختلف از جمله درب‌ها، دیوار و شیب‌های سری در نمودارهای ۱ و ۷ جدول ۲ نشان داده شده است.

۲۳.۱.۲ استفاده از طراحی بیمارستان
در اتاق پوشش پشتیبانی از طراحی دیگری به‌ساخته شد. بیمارستان راهرو و بیمارستان شریعتی پوشش در اتاق تصویربرداری به‌ساخت اتاق
شکل ۲: نمایی سه‌بعدی از اتاق انظار طراحی‌شده با MCNP Visual

شکل ۳: نمایی سه‌بعدی از اتاق بیمارستان شرعی طراحی‌شده با MCNP Visual

نمودار ۱: مقایسه اهمیت ذرت در بیمارستان شرعی در روز ۴ و ۸ با درب اتاق تزریق در بیمارستان شرعی تهران
نمودار ۱: مقایسه آهنگ دز دیوار اتاق تزریق در بیمارستان شریعتی تهران برای ۴ و ۸ پوش در روز PET/CT

نمودار ۳: مقایسه آهنگ دز درب اتاق انتظار در بیمارستان شریعتی تهران برای ۴ و ۸ پوش در روز PET/CT

نمودار ۴: مقایسه آهنگ دز دیوار اتاق انتظار در بیمارستان شریعتی تهران برای ۴ و ۸ پوش در روز PET/CT
نمودار 5. مقایسه آهنگ ذرات در اتقاق پویش PET/CT در بیمارستان شریعتی تهران برای 4 و 8 پوش در روز

نمودار 6. مقایسه آهنگ ذرات در اتقاق پویش PET/CT در بیمارستان شریعتی تهران برای 4 و 8 پوش در روز

نمودار 7. مقایسه آهنگ ذرات شیشه سری اتقاق انتظار PET/CT در بیمارستان شریعتی تهران برای 4 و 8 پوش در روز
جدول ۴: نتایج حاصل از محاسبه انگک ذر با کد MCNPX

<table>
<thead>
<tr>
<th>نوع ناحیه</th>
<th>ضخامت (cm)</th>
<th>انگک در ۸۵ بیمار (mSv/Week)</th>
<th>انگک در ۴ بیمار (mSv/Week)</th>
</tr>
</thead>
<tbody>
<tr>
<td>دیوار اتان انظار (ین) (برب)</td>
<td>۲۴ر+۶۸ر</td>
<td>۲.۸۱E-۰۲</td>
<td>۴.۸۴E-۰۳</td>
</tr>
<tr>
<td>دیوار اتان انظار (ین) (سر)</td>
<td>۲۲ر+۶۸ر</td>
<td>۲.۴۰E-۰۲</td>
<td>۳.۰۷E-۰۳</td>
</tr>
<tr>
<td>غیرکترنل</td>
<td>۴۴ر+۶۸ر</td>
<td>۸.۱۱E-۰۴</td>
<td>۴.۰۴E-۰۴</td>
</tr>
<tr>
<td>دیوار اتان پوش (ین) (سر)</td>
<td>۲۲ر+۶۸ر</td>
<td>۴.۸۸E-۰۶</td>
<td>۲.۶۷E-۰۶</td>
</tr>
<tr>
<td>غیرکترنل</td>
<td>۴۴ر+۶۸ر</td>
<td>۱.۰۶E-۰۴</td>
<td>۵.۲۵E-۰۴</td>
</tr>
<tr>
<td>دیوار اتان پوش (ین) (سر)</td>
<td>۲۲ر+۶۸ر</td>
<td>۴.۸۴E-۰۳</td>
<td>۲.۸۱E-۰۲</td>
</tr>
<tr>
<td>غیرکترنل</td>
<td>۴۴ر+۶۸ر</td>
<td>۱.۸۷E-۰۲</td>
<td>۹.۳۵E-۰۳</td>
</tr>
</tbody>
</table>

۵. بحث و نتیجه‌گیری

نتایج به‌مستند آمده از شبیه‌سازی مجموعه بیمارستان PET/CT شریعتی چهار بیمار نشان می‌دهد که حفاظت موجود برای بیمارستان شریعتی، محیطی کاملاً آسان را برای کاربر اجرا می‌کند و میزان ذخی که در هنگه به هر کاربر می‌رسد، کمتر از حد مجاز تعیین شده است. همچنین، نتایج شبیه‌سازی برای مناطق کترنل‌نشده، نشان از بی خطر بودن آن نواحی برای عموم افراد دارد. در عمل نیز، نتایج توسط پژوهشگران سازمان انرژی الکتریک تابعه است و پس از آن، این بیمارستان محور انجام تصویربرداری با استفاده از دستگاه PET/CT را دریافت کرده است. نتایج شبیه‌سازی نشان می‌دهد که اگر شرایط و امکانات بیمارستان شریعتی بی‌گونه‌ای نیاز به کنترنل که این مراکز پروانه تعداد پوشش‌های خود را به ۸ بیمار در روز نیز ارتفا دهد، همین مقدار حفاظت موجود کفایت می‌کند ضخامت.

۶. تحقیق و راهکارهای

لازم است از همه کارکنان بخش بیمارستان PET/CT به صورتی تهران به مرحله آزمایشات تشکر و قدردانی شود.