بررسی اثر دزهای مختلف پارتاک‌کی الکترونی بر روی اتلاف نوری در فیبریوری

الهام حبیباتی، لیلا گل‌قامد و محمدعلی حداد

دانشکده فیزیک، دانشگاه یزد، یزد، ایران

پست الکترونیکی: gholamzadeh@yazd.ac.ir

چکیده
سنگش تاşıی پونسار در زمین‌های مختلف همانند این می‌باشد. فراوان‌ترین آشکارسازی صنعتی، حضور در برای ناشی و پوششی اهمیت سببی داد. دریافت تاşıی تیکت مهم برای تعیین مقدار انرژی جذب شده و ارتباط آن را که همان‌طور که در مقاله ادن نشان داده، به عنوان دریافت تاşıی نشان داده شده که هدف ما در اینجا بررسی اثر تاşıی پونسار بر روی فیبر نوری است. بدن‌تریب در این مقاله اثر تاşıی پارتاک‌کی الکترونی بر اتلاف نور عمومی از فیبریوری، پس از پایان تاşıی دهی در گستردگی طول موج‌ها 1500-13000nm مورد بررسی قرار گرفته است. فیبریوری نوری با دزهای 22 و 47 تاşıی داده شده. تمام اندازه‌گیری‌ها در دمای 24±2 درجه سانتی‌گراد انجام شده است. نتایج نشان می‌دهد که اتلاف نور عمومی از فیبریوری مناسب با دز تاşıی افزایش می‌یابد و بعد از پایان تاşıی دهی با گذشت زمان کاهش می‌یابد.

کلیدواژه‌ها: فیبریوری، پارتاک‌کی الکترونی، اتلاف، دز، دریافت.

1. مقدمه
فیبریوری، رشته‌ای از جنسی شفاف با قابلیت گذراندن نور است که برای انتقال اطلاعات دیجیتال مورد استفاده قرار می‌گیرد. امروز مخابرات فیبریوری، به دلیل پهنای باند و سیمپتر و مصرف پایین انرژی در مقایسه با کابل‌های مسی و تأخیر کمتر و امکان پذیری از مقایسه با مخابرات ماهواره‌ای از مهم‌ترین ابزار انتقال اطلاعات محاسباتی خوانده می‌شود [1]. اخیرا تلاش‌های قابل توجهی به منظور استفاده از فیبریوری به عنوان سنگش‌های کاربردی در تاşıی‌های زیست محیطی انجام شده.
برای تحقیق و بررسی دیزاین فیبر ویسیکالی نوری این است که اطلاعات در این را به جای سیگال‌های الکتریکی با استفاده از سیگال‌های نوری منتقل کنند. که در نتیجه فیبر ویسیکالی نوری نسبت به دخالت الکترومغناطیسی که در دو تا یک مترهای مکانیزم تبدیل زیادی از دیزاین‌های الکتریکی باشد. این هستند و همچنین این تیره‌ها به دلیل دارای بودن رو به رو نسبت تابش‌های پایدار برای استفاده در داخل راکت‌ها هم بسیار مناسب هستند و توانایی فیبر ویسیکالی نوری برای یک آشکارسازی تابش را راه دور، آنها را در می‌توانند به‌عنوان آشکارسازی سخت مانند: سیستم‌های قطعی و توربینی ناسیونال گردانده، است.

فیبر ویسیکالی نوری و فیبر ویسیکالی نوری در معرض باشند قرار می‌گیرند، تغییراتی در خواص نوری رش خواهند داد. که از آن جمله می‌توان به افزایش اثاث جذب، تغییرات ضربی و شکست و تغییر تابش‌های نوری نام برد. مطالعه ارث‌شناسی بستگی و تغییرات تابش‌های نوری با انتقال‌های دیزاین‌های الکتریکی اثاث ناسی و ناسی تابش زمان به‌وجود تابش و آنتی‌زی ویسیکالی نوری با انتقال اثرات واقعی بر اثاث ناسی تابش‌های نوری بسیار برگزار از اثرات ذرات است که به نوع فیبر ویسیکالی نوری استفاده شده است.

مواد و روش تحقیق

2. مواد و روش تحقیق

به طول 15 m نمودن فیبر ویسیکالی نوری که ممکن است به طول 125 mm، قطر پوسته 9 mm و قطر روکش اکریلات 250 mm می‌باشد. بهبود و مورد آزمایش قرار گرفت. ابتدا انتقال نور ویسیکالی از انواع آن آستن با دستگاه سنگین ناسی و ناسی شد و سپس فیبر ویسیکالی نوری با شناخته‌ای الکتریکی رودخانه موجود در مجتمع پیش‌های ایران مکرر با 23 کیلو گیگا ژول 10 نجات دهای معنی می‌باشد 47 مورد تابش قرار گرفت. پس از پایان تاییده مجددا انتقال نور عبری از فیبر با سنگی انتقال‌های تابشی فیبرهای نیم ساعت، یک روز، دو روز، سه روز، پنج روز بعد از پایان تابش، انتقال‌های ادامه داشت و در انتها تایید کرد و بعد از تابش مورد بررسی قرار گرفت. تمام مراحل انتقال‌های گرفت در دمای 25°C 23 انجام شده است.

1 Anritsu ML9001A(optical laser source & optical power meter).

عوامل مانند تکیپ هسته و پوسته فيبر ویسیکالی و روست ساخت آن، نوع تایید، آهنتی در و در کل، توان و طول موج نوراعوری، شرایط محیطی و دما، مقدار اتصالات موجود در فیبر و زمان هزینه به بین قرار گرفتن تحت تابش و انتقال‌های دیزاین‌های فیبر ویسیکالی در معرض تابش بستگی دارند [17، 18]. پژوهش‌های قبلی نشان می‌دهد که وقتی
3. نتایج آزمایش

اندازه‌گیری‌های قبل از تابش به‌وسیله نمونه‌های فیبرنوری در شکل‌های 1 و 2 نمایش داده شده که اتلاف نور عبوری را برحسب طول موج نشان می‌دهد. که بخشی از این اتلاف اتلاف ذاتی فیبرنوری و بخش دیگر آن اتلاف ناشی از اتصال اتلافی ابتدا و انتهای فیبرنوری به دستگاه سنجش می‌باشد.

شکل (1): اندازه‌گیری‌های قبل از تابش به‌وسیله نمونه‌های فیبرنوری.

شکل (2): اندازه‌گیری‌های قبل از تابش به‌وسیله نمونه‌های فیبرنوری.

طبق تعريف اگر پرتو با ناينده P به يک اندازه‌گیری فیبرنوری نزويد که شود و ناينده پايي مانده پس از عبور از طول L (کیلومتر) باشد، اندازه‌گیری نور عبوری در فیبرنوری برحسب دسی‌بل بر کیلومتر (dB/km) با رابطه 1 داده می‌شود:

\[L = 10 \log_{10} \left(\frac{P}{P_0} \right) \]

در شکل‌های 6 و 7 میزان اتلاف بر حسب روز در دو نمونه نشان داده شده است. همانطور که از شکل‌ها مشخص است، تابش 22 kGy در پس از 3 هفته‌های میزان ناپایداری به‌وسیله نمونه‌های کاسپن است، پس بعد از تابش دهمی، اندازه‌گیری تابش به‌وسیله نمونه‌های کاسپن ده می‌دهد.

شکل (3): اندازه‌گیری‌های بعد از تابش به‌وسیله نمونه‌های فیبرنوری.

شکل (4): اندازه‌گیری‌های بعد از تابش به‌وسیله نمونه‌های فیبرنوری.
شاکل (۱۷): اثرات رله طول موج دیفرنتریو تکمیل شماره یک، قبل از تابیش دهی و بلافاصله پس از تابیش دهی یا در ۲۴ و ترمیم آن در ه دو بیست روز پس از تابیش دهی.

شاکل (۱۸): اثرات رله طول موج دیفرنتریو تکمیل شماره یک، قبل از تابیش دهی و بلافاصله پس از تابیش دهی یا در ۲۷ و ترمیم آن در ه دو بیست روز پس از تابیش دهی.

مشاهده می‌شود که بلافاصله پس از تابیش دهی، اثرات جانبی افزایش یافته است و با گذشت زمان (د) بیست و سی روز، این اثرات به موج طول موج ۷۵۰ nm افزایش یافته است.

شاکل (۱۹): اثرات رله طول موج دیفرنتریو تکمیل شماره یک، پس از تابیش دهی یا در ۲۷ و ترمیم آن در ه دو بیست روز پس از تابیش دهی.

شاکل (۲۰): اثرات رله طول موج دیفرنتریو تکمیل شماره یک، پس از تابیش دهی یا در ۴۷ و ترمیم آن در ه دو بیست روز پس از تابیش دهی.

شاکل (۲۱): اثرات رله طول موج دیفرنتریو تکمیل شماره یک، پس از تابیش دهی یا در ۲۲ و ترمیم آن در ه دو بیست روز پس از تابیش دهی.

شاکل (۲۲): اثرات رله طول موج دیفرنتریو تکمیل شماره یک، پس از تابیش دهی یا در ۱۵۵۰ nm افزایش یافته است.

شاکل (۲۳): اثرات رله طول موج دیفرنتریو تکمیل شماره یک، پس از تابیش دهی یا در ۱۵۰۰ nm افزایش یافته است.
شکل (19): اثر بر حسب ذخیره در فیبرنوری کمد. هک روز پس از
پایان تاپیش در طول موج 1550nm

در شکل۱۰، درصد نسبی تاثیر نسبت به قبل از تاپیش باریکی الکترونی بر روی فیبرنوری بالافامله به روز

6. نتیجه‌گیری

اثر تاپیش باریکی الکترونی با دهه‌ی ۲۲ اتلاف نور عبوری از دور دمیره فیبرنوری تکمیل بالافامله و نیم
ساعت پس از پایان تاپیش در گسترده طول موج‌های
۱۵۰۰-۱۴۰۰nm مورد بررسی قرار گرفت. نتایج نشان داد که
اثلاف نور عبوری از فیبرنوری متناسب با دی تاپیش افزایش می
یابد و این افزایش به جز مربوط به زمان (که، ده، بیست و
سی روز بعد از پایان تاپیش می‌باشد، که اتلاف
نور عبوری از فیبرنوری گاه گاه زمان کاهش می‌یابد، به
عبارتی نویع ترمیم خودی خودی در فیبرنوری ترمیمی رخ داده
است که این کاهش اتلاف را در پی داشته است. در ادامه کار,
لازم به بررسی اثر دهه‌ی تاپیش بر روی تعداد دمیره
فیبرنوری متنوع است تا بتوانی رابطه قوی بین اتلاف
نور عبوری در فیبرنوری و میزان در تاپیش داشته باشیم.

شکل (۲۰): درصد تضعیف نسبی بر حسب روز در فیبرنوری تکمیل بالافامله پس از پایان تاپیش در ۲۲ و ۴۷kGy طول موج
1550nm
[1] اسماعیل سراجی، فرامرز مطاله و راهبردی ادوات مخابرات نوری، فیبرهای نوری، تهران، چهار دانشگاهی صنعتی شریف، 1382.

[9] صفری، ابراهیم حسین، سابنه، حسینی، محمدرضا سادات، سالخوردر، بهروز و امامی، علی. بررسی تلفات نوری عبوری از فیبرهای نوری در اثر ناپیش گاما. (1390).
