مقاله بی‌هوشی

مجله سنجش و ایمنی رترو. جلد 7 شماره 4، پاییز 1399 صفحه 59-69
تاریخ دریافت مقاله: 1398/06/24 تاریخ پذیرفته مقاله: 1398/06/12

اجرای رادیوگرافی نوترنی در راکتور تحقیقاتی کم قدرت

محمدهسین چوپاندستجردی، جواد مختاری، جمشید خورسندی و افرز عسگری

پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران، اصفهان، ایران

اصفهان، سازمان انرژی اتمی ایران، پژوهشگاه علوم و فنون هسته‌ای، پژوهشکده راکتور و ایمنی هسته‌ای، صندوق پستی: 14489

ایمیل الکترونیک: mdasfjerdi@a corp. ir

چکیده

رادیوگرافی نوترنی یک روش آزمون غیرمحور پیشرفته، سودمند و منحصر به فرد در صنایع و تحقیقات مختلف می‌باشد. راکتورهای هسته‌ای به MNSR مانند قدرت‌دهنده و پایدار تولید شار نوترن برای سیستم رادیوگرافی نوترنی محصول می‌شوند. در این پژوهش، از راکتور تحقیقاتی عنوان نوترنی که سیستم رادیوگرافی نوترنی استفاده شده و پارامترهای زمانی و انرژی نوترنی آن مورد ارزیابی قرار گرفت. همچنین با استفاده از روش قیاسی مثبت و سلیقه‌دار توزیع نوترنی در باریکه نوترنی از مدار هسته‌ای تبدیل به از آن تهیه شد و با استفاده از استاندارد مخصوص منبع نوترنی ASTM-E545 کیفیت تصویر نوترنی آن مورد ارزیابی قرار گرفت. نتایج از انجام کار آزمایشی نشان می‌دهد شار نوترنی باریکه این سیستم در بیشینه توان راکتور برای با پیوسته‌نداری سرعت و تنظیم موج‌سازی 1000 می‌باشد. ارزیابی کیفیت تصویر نشان داد کیفیت تصویر رتبه 7 (هر تینگ) بر اساس رتبه تیک استاندارد ASTM-E545 می‌باشد.

کلیدواژگان: رادیوگرافی نوترنی، راکتور MNSR، پارامترهای نوترنی، شاخص کیفیت تصویر، استاندارد ASTM

1. مقدمه

رادیوگرافی نوترنی یک روش آزمون غیرمحور سودمند و محتروبه فرد می‌باشد که به طور گسترده‌ای در زمینه‌های صنعتی، کانال‌فرزی، تقویت‌کننده، نمونه‌سنجی و...

در رادیوگرافی نوترنی یک تصویر از ساختار داخلی جسم به دو روش که شدت نور پرکسل تصویر می‌باشد. تصویر نوترنی یک بهره‌برازی از جسم در همان نقطه است و مجموعه عناصر سیمی را از نوع مواد داخل جسم ارائه می‌دهد. باید همچنین تصویر پیشتر نوترنی در مواد سیکل (نظریه هیدروژن و آب) نسبت به رادیوگرافی ایکس دارای قدرت
مودار و روش‌ها

1.2. راکتور اکت اوراکترهای تحقیقاتی دارای تجهیزات پترودنی در داخل و خارج از قلب خود هستند. که دستیابی به شار نوترن و گامای تولید شده در قلب راکتور را امکان‌پذیر می‌سازد [2]. تجهیزات پترودنی خارج از قلب که باریکه نوترن و گامای را به وینزیون، تحت یک کاردینالر اکت اوراکتر تحقیقاتی با استفاده از تجهیزات پترودنی خارج از قلب می‌باشد. برخی اکت اوراکترهای تحقیقاتی صرف دارای تجهیزات پترودنی داخل قلب خود هستند و به عبارتی فاقد بیم تیوبر هستند. راکتور تحقیقاتی 1 از نوع تانک استخری با حداکثر توان 300 kW این بکه به هدف طراحی اصلی خود که آنلایز به روش فلسفی‌سازی نوترن می‌باشد، فاقد بیم تیوبر خارجی است [4].

در این پروپره، ارزیابی‌های پیامده استخراج جام اکت اوراکتر نوترنی به حفاظت بیولوژیکی در این راکتور با استفاده آزکی لوله آلومینیومی خارج از تانک راکتور انجام شد. با پارامترهای باریکه نوترنی که از نظر رادیوگرافی نوترن اهمیت دارد، تجربه شود. نسبت شار نوترن به دیگ در گاما، و نسبت مواردی باریکه (نسبت طول به قطر باریکه) مورد ارزیابی قرار گرفت. اندازه‌گیری شار نوترن با استفاده از روش فلسفی‌سازی پوکس ایندیشن و اندازه‌گیری در گاما با استفاده از دیزیمنر گرمایشی-700 در محل خروجی‌باریکه

ارتفاع مکان‌های سوخت با عناوین 90 اوراکروم 235 می‌باشد، به همراه با تابعی برای و سایت‌های پترودنی داخلی و سایت‌های به دیگر درون تانک آلومینیومی راکتور نصب شده‌اند. تانک راکتور نیز درون استخراج راکتور واقع شده است و در دو تانک و استخر با آب سیکر بر شده این‌د (شکل 1). تانک راکتور از جنس آلومینیوم با قطر خارجی 70 cm و ارتفاع 40 cm هکم‌های استخراجی تانک دچار کم‌و‌بیش و ارتفاع 70 cm از جنس برنین با قطر 170 cm، هدف اصلی طراحی این راکتور انتلیز به روش فلسفی‌سازی نوترن می‌باشد. فاقد بیم تیوبر خارجی است [4].

شکل (1) نمایی از راکتور و نمایش اجزای استخراج و تانک

1. 2.2. راکتور تحقیقاتی که راکتور کم قدرت به حداکثر MNSR

توان 200 کیلووات می‌باشد که آب سیکر در آن به عنوان خنک‌کننده، و کت کتک‌های بیولوژیکی به کار رفته است [4]. قلب راکتور که مشکلی از میله‌های سوخت با عناوین 90 اوراکروم 235 می‌باشد به همراه با تابعی برای و سایت‌های پترودنی داخلی و سایت‌های به دیگر درون تانک آلومینیومی راکتور نصب شده‌اند. تانک راکتور نیز درون استخراج راکتور واقع شده است و در دو تانک و استخر با آب سیکر بر شده این‌د (شکل 1). تانک راکتور از جنس آلومینیوم با قطر خارجی 70 cm و ارتفاع 40 cm هکم‌های استخراجی تانک دچار کم‌و‌بیش و ارتفاع 70 cm از جنس برنین با قطر 170 cm، هدف اصلی طراحی این راکتور انتلیز به روش فلسفی‌سازی نوترن می‌باشد. فاقد بیم تیوبر خارجی است [4].
بیرای استخراج بکاربری نوترنی جهت انجام رادیوگرافی نوترنی در این راکتور، با توجه به برخی محدودیت‌های ابعادی یک لوله آلومینیومی به یک سر بسته به طول 500 cm و فضای بین در نظر گرفته شد که محل نصب آن در فضای بین از تانک راکتور و درون استنشاقی دیگر شده، بیش از 5 cm لوله آلومینیومی صدح می‌شود و در حالی که ستون هوا درون حفاظ بیولوژیکی راکتور (آب استخر) ایجاد می‌کند، امواج کواردن نوترنی و گاما را به خارج از گرمای نیمه‌ی منع‌یابی و مانند یک یک نمونه می‌کند و زمانی که راکتور روشی باشد باعث نلنده بکاربری نوترنی در خروجی خود می‌شود.

پس از نصب این لوله آلومینیومی راکتور در توان 30 kW روشن شد و در محل خروجی، یکبار پولک ایندیوپاتر و یکبار دنیمتر-700 جهت اندازه‌گیری شار نوترنی و در گاما قرار گرفت.

3.2.2 نسجش کیفیت باریکه با شاخص کیفیت تصویر

کیفیت باریکه یک اندکار گیری بر روی قدرت تفکیک سبب می‌شود. رادیوگرافی است [7]، که به عبارت دیگر، شاخص کیفیت تصویر (IQI) شامل دو وسیله با نام‌های شاخص خلوص باریکه (BPI) و شاخص حساسیت (SI) می‌باشد. با توجه به تحلیل دانشجوی تصویر رادیوگرافیکی، شاخص کیفیت باریکه، پارامتری باید تظییب نوترنی‌های حرارتی، میزان نوترنوی‌های پراکنده، میزان گاما و میزان تولید زوج را در یک باریکه نوترنی می‌توان

1 Beam Quality Indicators
2 Image Quality Indicators
شکل (3): نمایی از BPI با نماش اجزای و ابعاد (نمای اجزای این سطح نیز روی سطح دیگر، در جهت مقایه قرار داده). تجزیه و تحلیل دانستنی‌های تری‌دی از کمک به این W بهینه‌سازی اطلاعات راجع به باریکی نتوانی تولید می‌کند. با اندوزه‌گیری دانسته‌هایی دوريه فیلم در نقاط مختلف تصویر شاخه خلوط باریکه مطلوب جدول 1 و با استفاده از روابط یا ۱ تا ۴ در میان نوتورن نوراتی باریکه (NC)، نوتورن پراکند (S)، نوتورن تویله (P) و میزان کامئی (\(\gamma\)) باریکه را تعیین نمود.

جدول 1: چگالی‌های نوری در فضاهای مختلف

<table>
<thead>
<tr>
<th>عنوان</th>
<th>توضیح</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_b)</td>
<td>چگالی‌های اندازه‌گیری شده فیلم در تصویر قرنسی‌های سری‌بر</td>
</tr>
<tr>
<td>(D_l)</td>
<td>چگالی‌های اندازه‌گیری شده فیلم در تصویر قرنسی‌های سری‌بر</td>
</tr>
<tr>
<td>(BPI)</td>
<td>چگالی اندازه‌گیری شده فیلم در مرکز سری‌بر</td>
</tr>
<tr>
<td>(D_t)</td>
<td>اختلاف بین مقادیر (\Delta D_l)</td>
</tr>
<tr>
<td>(D_s)</td>
<td>اختلاف بین مقادیر (\Delta D_b)</td>
</tr>
</tbody>
</table>

در استاندارد ASTM-E545 جدولی وجود دارد که با نوک دانستنی‌های بریگی شده توسط BPI و SI به مقادیر اندازه‌گیری شده نوک \(P\) و S پس سیستم بندی که تنها به تصور \(G\) و
\(H\) و NC S می‌تواند تولید کننده کم‌تعداد کیفیت تصور

1 Methylmethacrylate
رابطه ۵ شار نوترتون تعبین می‌شود:

$$A = \sigma \rho \frac{N_{\text{NC}}}{M} \left(1 - e^{-\lambda D_{\text{NC}}} \right)$$

(۵)

چندان نوترتون حاصل از باریکه مورد آزمون را از آن می‌دهد.

(جدول ۲)

$$NC = \frac{D_{\text{NC}} - \left(\text{higher} \times D_{\text{NC}} + \text{lower} \times D_{\text{NC}}\right)}{100}$$

(۱)

$$S = \frac{\Delta D_{\text{NC}}}{D_{\text{NC}}} \times 100$$

(۲)

$$\gamma = \frac{D_{\text{NC}} - \text{lower} D_{\text{NC}}}{D_{\text{NC}}} \times 100$$

(۳)

$$P = \frac{\Delta D_{\text{NC}}}{D_{\text{NC}}} \times 100$$

(۴)

جدول (۲). رده‌بندی کیفیت باریکه نوترتون با استفاده از تحلیل SI و BPI تصادفی

<table>
<thead>
<tr>
<th>P</th>
<th>γ</th>
<th>S</th>
<th>G</th>
<th>H</th>
<th>NC</th>
<th>دد</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳</td>
<td>۵۹</td>
<td>۶</td>
<td>۸</td>
<td>۱۰</td>
<td>۱</td>
<td>I</td>
</tr>
<tr>
<td>۴</td>
<td>۵۹</td>
<td>۲</td>
<td>۶</td>
<td>۸</td>
<td>۱</td>
<td>II</td>
</tr>
<tr>
<td>۵</td>
<td>۵۰</td>
<td>۵</td>
<td>۲</td>
<td>۶</td>
<td>۱</td>
<td>III</td>
</tr>
<tr>
<td>۶</td>
<td>۵۰</td>
<td>۲</td>
<td>۴</td>
<td>۶</td>
<td>۱</td>
<td>IV</td>
</tr>
<tr>
<td>۷</td>
<td>۴۵</td>
<td>۷</td>
<td>۷</td>
<td>۵</td>
<td>۱</td>
<td>V</td>
</tr>
<tr>
<td>۸</td>
<td>۴۴</td>
<td>۷</td>
<td>۸</td>
<td>۵</td>
<td>۱</td>
<td>کار حاضر</td>
</tr>
</tbody>
</table>

برای دست‌بایی به نشان خوب، باید بهSI و BPI به صورت عمود بر باریکه، تا حد امکان موایی با سطح فیلم و نوزیدیک به آن و به دنیابی پاشند که سیم کادمویه عمود بر نوزیدیک ترین لبه فیلم باشد.

۲.۲ اندازه‌گیری شار نوترتون و دز گاما

برای اندازه‌گیری شار نوترتون در محل رادیوگرافی نوترتون که در واقع همان محل خروجی باریکه در کانال خشک می‌باشد، از روش شناختی شدید فعالیتی یک پلکن فلزی استفاده شد. [۹] در این آزمایش از یک پلکن بسیار نازک قاب‌زیر ایندیوم استفاده شد. ایندیوم در اثر زمان نوترتون پرتوها یک می‌شود و پرتوهاها یک گام گیل می‌کند. سطح مقطع جذب نوترتون در ایندیوم تقیبی ۲۰۰ بار و نیمه عمر فروپاشی آن در حدود یک ساعت
3. نتایج و بحث

شکل هندسی باریکه نوترتونی حاصل از نصب بیم تیوب (لوله آلومینیوم) در محل خروجی ان دایره با قطر 6 cm و با توجه به ابعاد بیم تیوب نسبت میزان اسیرای باریکه برابر با 100 تعیین شد. با استفاده از میزان پرتودهای پولک ایندیمی پس از پرتوده و استفاده از رابطه 5، مقدار شار نوترتون بر اسیب آثار حاد و نوترتون در گاما نیز با استفاده از فرمول میزان درخشش گذشته TLD70000 پس از پرتوده و رابطه 6، برای هر جم 100±5 mGy تعیین شد. بنابراین میزان نسبت نوترتون به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان نرخ به گاما که برای مقاومت رادیوگرافی نوترتونی نیز با ایجاد مشخص شد برای با این مقدار شار نوترتون در گاما نیز TLD70000 در 100±5 mGy تعیین شد. بنابراین میزان NMRQFAD کیفیت قابل قابل قابل قابل قابل قابل قابل C1118713419 لیست تصویر تأخیری در میدان نواحی باریکه نوترتونی

