مقاله پژوهشی

مجله مهندسی و اجرایی استفاده می‌شود. در کنترل اجرایی، هرگاه نور لیزر وارد محیط شود جهت حفاظت از مصرف کننده، نور لیزر به کنترل جهت ناحیه تحت کنترل منشأ نور باید به توجه به آن ناحیه باشد تا کنترل مطابق با ضوابط خاص باشد. با مشخص کردن ناحیه که مقدار چگالی پرتو از حد مجاز پرتوی بیشتر است می‌توان حفاظت از ناحیه تحت کنترل انجام داد. با توجه به محدودیت‌های این ابزار، ناحیه تحت کنترل خطر از روشهای مناسب است. با توجه به ناحیه تحت کنترل، ناحیه خطر ناحیه تحت کنترل و ناحیه خطر ناحیه تحت کنترل IV کلیدهای اینیانی کناره‌گیری از باریکه لیزر و پرتوی پرتویی لیزر کلاس IIIB و IV می‌شود. در صورتی که اعمال کنترل‌های مهندسی برای کاهش پرتویی افراد به زیر حد کافی نشود، باید از کنترل‌های اجرایی استفاده شود و در آخرین مرحله و در صورت ضرورت لازم است وسایل حفاظت شخصی مانند عینک محافل مناسب استفاده شود. [1]

1. مقدمه

هنگام نصب و استقرار تجهیزات لیزری، روشهای مختلفی برای کنترل پرتوهای لیزری جهت جلوگیری از پرتویی بالاتر از حد کارکنان و سایر افراد با پرتو لیزر و نیز بیش از مورد و در اثر خطرات غیرنوری لیزر به کار می‌روند. روشهای کنترلی بر سه نوع هستند: کنترل مهندسی، کنترل اجرایی و وسایل حفاظت شخصی استفاده از کنترل‌های مهندسی در محدودسازی پرتویی افراد نسبت به دو روشه
3. محاسبه ناحیه خطر

امروزه در اغلب مراکز درمانی برای اصلاح پوست، هدف موهای زائد و زیبایی به طور گسترده از لیزر استفاده می‌شود. لیزر دایود (810 نانومتر)، لیزر آلکساندریت (755 نانومتر) و لیزر نئودیمیم یاگ (1064 و 532 نانومتر) لیزرها بیشتری استفاده می‌شوند.

مشخصات آنها در جدول 1 و 2 آمده است.

شکل (1): تموئن‌های از لیزر دایود

جدول (1): مشخصات لیزر دایود

<table>
<thead>
<tr>
<th>طول موج (nm)</th>
<th>810</th>
<th>1064</th>
</tr>
</thead>
<tbody>
<tr>
<td>چگالی تون (J/cm²)</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

جدول (2): مشخصات لیزر نئودیمیم یاگ و آلکساندریت

<table>
<thead>
<tr>
<th>طول موج (nm)</th>
<th>1064-1074</th>
<th>532-555</th>
<th>1320-1330</th>
</tr>
</thead>
<tbody>
<tr>
<td>چگالی تون (J/cm²)</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>نرخ تکرار</td>
<td>0.5</td>
<td>1</td>
<td>0.1-0.3</td>
</tr>
<tr>
<td>پهنای بان (ms)</td>
<td>0.1</td>
<td>0.5</td>
<td>0.1</td>
</tr>
</tbody>
</table>

تردد به آن تحت کنترل باشد. مرز این ناحیه براساس انسان‌گیری و یا محاسبه تعیین می‌شود. روش انسان‌گیری دقیقتر است و در صورت در دسترس نبودن تجهیزات مناسب باید براساس محاسبه می‌رود. مرز ناحیه تحت کنترل را تعیین کرد.

2. ناحیه خطر

در ناحیه تحت کنترل نور لیزر وارد محیط می‌شود لذا احتمال پرتوگیری و آسیب پرتوئی وجود دارد. تردد در این ناحیه و نیز چیدمان تجهیزات در ناحیه بایستی به نحوی باشد که احتمال پرتوگیری کم‌تر گردد. با توجه به وسعت ناحیه در مراکز کار با لیزر خصوصاً جهت کارهای درمانی ممکن است این ضوابط مورد توجه قرار گیرد از این رو با تعیین «ناحیه خطر» به‌طور متقابل تحت کنترل را محدود کرد.

در ناحیه خطر چگالی پرتو لیزر در محیط بسیار زیاد مقدار بیشینه مجزای ناش (MPE) است. از ناحیه توزیع مرز ناحیه خطر بر اساس رابطه کلی زیر تعیین می‌گردد [2-3]

\[\phi = \frac{1}{2} \left[\frac{4P}{\pi MPE} - a^2 \right]^{1/2} \]

که در آن \(\phi \) تابش مجاز و \(a \) قطر روئه.

خروجی لیزر است. برای لیزرها پزشکی مورد استفاده در مراکز درمانی، نحوه تابش مختلف است. بر اساس نحوه تابش در حالات مختلف روابط پژوهشی برای تعیین مرز ناحیه خطر وجود دارد. در این پژوهش لیزرها پزشکی که جهت تابش به پوست بیمار استفاده می‌گیرد، بررسی شده‌اند. نمونه‌ای از لیزرها پوست در شکل 1 و 2 نشان داده شده‌اند. به هنگام کار با این لیزرها، بازتاب نور لیزر برای

\(^1\) Maximum Permissible Emission
در دهان بیمار قرار داده می‌شود. (۲) می‌باشد. (۳) -۱. داروزده آن مشابه شکل

شکل (۳): نحوه ناحیه بازتاب در لیزور دندانپزشکی.

در این حالت احتمال بازتاب آماده‌ای نور وجود دارد و در واقع ناحیه خطر بر اساس بازتاب آماده محاسبه می‌شود. در این حالت از رابطه زیر استفاده می‌شود.

\[r = \sqrt{\frac{RPCos\beta}{\pi MPE}} \]

(۲)

با توجه به احتمال وجود فلز در دهان بیمار اگر از آرتودنسی، دندان پرشه‌ها، پنس و... ضریب بازتاب بالای ۲۰٪ خواهد بود. اطلاعاتی دو مدل از لیزور با کاربرد در دندانپزشکی در جدول (۳) آمده است.

جدول (۳): بررسی هندسه ناحیه بازتاب

<table>
<thead>
<tr>
<th>طول موج (nm)</th>
<th>ZM MPE (µJ/cm²)</th>
<th>SN</th>
<th>نام تابش</th>
</tr>
</thead>
</table>
| 7۱۶۳ | ۴۲۳ | ۰۰۰
نتیجه‌گیری

جهت تعیین مزر ناحیه خطر با استناد به شکل گذشته نگاهی به نقاط مختلف اندازه‌گیری شده اندازه‌گیری می‌توان با محسیبی نظیری نیز ناحیه خطر را تعیین کرد. البته در روش اندازه‌گیری پارامترهای مختلفی مانند نایکتوناتی، چشم‌های، بازتاب‌ها و جذب محیط نیز لحاظ خواهد شد. لذا در...

مراجع

[۳] استاندارد ملی ایران شماره ۳۵۰۱