مقاله پژوهشی

طرحی و ساخت حفاظ پتروی کامپوزیت‌های بپلمر انعطاف‌پذیر برای میدان‌های آمیخته

نوترین-گاما

سیدرضا هاشمی¹، مجتبی ناجی‌پور² و اسکندر اسدی‌آریاده³

¹دانشکده فیزیک، دانشگاه دامغان، دامغان، سمنان، ایران.
²گروه فیزیک هسته‌ای، دانشکده علوم پایه، پردیس دانشگاه مازندران، پلدشت، مازندران، ایران.
³سمنان، دامغان، دانشگاه دامغان، دانشکده فیزیک، کدپستی: 37367-44111.

پست الکترونیکی: tajik@du.ac.ir

چکیده

در این پژوهش، حفاظ کامپوزیت انعطاف‌پذیر با ترکیبی از پلی اتانل، تنگستن و کاربید بور برای میدان‌های آمیخته نوترین-گاما طراحی و ساخته شده است. برای این منظور، در مرحله اول، مطالعات نظری با استفاده از کد منطقه‌ای MCNP و در مرحله دوم با توجه به نتایج مطالعات شبیه‌سازی، برای اولین بار در داخل کشور کامپوزیت تنگستن کرکب دار با استفاده از ترکیب فاز سخت دیت کاربید بور به همراه پدیم و فشرده شده و ترکیبی از انواع مختلفی از پلی اتانل نرم و سخت به صورت آرماشگاهی در مرکز پدیم و پرموشیمی ایران ساخته شد. در مرحله سوم برای حفاظت ساخته شده میزان تضعیف شار نوترین-گاما به ویژه از اشکال‌سان Am-Be و میزان تضعیف شار گاما-چشمی سریوم ۱۴۱ NaI با استفاده از اشکال‌سان NaI اندازه‌گیری شد. نتایج نشان می‌دهند که کامپوزیت پلی اتانل/کاربید بور/تنگستن (PE/B4C/W) با توجه به ابعاد میکرومتری ذات تقیؤن کننده و سطح مقفل بازه‌ای پرتمپان رادیاتکنیکی در این حفاظات، حفاظات با ضخامت بالا کاربرد شود، تحقیقاتی به ضخامت ۲/۵ سانتی‌متر با ۳۰ درصد تنگستن و ۱۰ درصد بور ترکیب Am-Be، به ابعاد ۵۰ درصد نوترین-گاما چشمی آمرسیوم-۹۰ در لیتوم نوترین-گاما داده شد.

کلیدواژگان: حفاظ کامپوزیتی انعطاف‌پذیر نوترین، گاما، اشکال‌سان Am-Be

1 مقدمه

می‌شود این پتروها قابلیت نفوذ سیسیار بالایی در مواد دارد. و در صورتی که با حفاظات مناسبی تضعیف نشوند، می‌توانند به انسان، موجودات زنده و سرطان‌های الکترونیکی آسیب‌های جدی وارد صادق و خطرات زیست محیطی چریان‌نپذیری را امرزه با پیش‌گیری کننده‌ای، استفاده از نوترین-گاما در زمینه‌های مختلف نظامی، سنتی، زیستی، کشاورزی و تحقیقاتی رو و افزایش است. در این واکنش‌های هسته‌ای پتروها مختل‌هی از جمله پتروها گاما و نوترین ساطع
2. مطالعات شیمی‌سازی

تغییر شدت باریکه‌گما عمداً از جهات طبقه‌بندی فوتون‌پرتوی بی‌پروآی کامپیوتر، کامپیوتر، قلوه و پراکندگی هم‌وسوآی الکترون‌های ماده و تغییر باریکه‌گما نوری در یک ماده از دید پدیده‌های جاده و یا پراکندگی با سختهای ان‌نام‌زمانی صورت می‌گیرد، این تغییر به صورت تابع نمایی با رابطه 1 شناخته می‌شود:

\[I = I_0 e^{-\alpha x} \]

در این رابطه \(I \) شدت پرتو عبوری از حفاظ واقع‌شده، \(I_0 \) شدت اولیه پرتو حالتی که مابین چمچمه و شیشه‌کارساز در نظر گرفته می‌شود و \(\alpha \) ضریب تغییر خطی که بین جنس ماده جدید و اسیری پرتو (فوتون و نور) وابسته است. این ضریب برای فوتون‌های گاما به صورت \(\alpha \) و برای نورون‌ها به صورت \(\beta \) نشته می‌شود و \(x \) ضخامت جاذب است.

با استفاده از رابطه 2، تغییر هر نمونه به دست می‌آید:

\[K = \frac{I - I_0}{I_0} \times 100 \]

بر اساس نتایج محضانه در سال‌های اخیر [15-16-17-18-19-20], یک سری از مطالعات شیمی‌سازی و اندوزه‌گیری های مربوط به برداشت آورده می‌باشد. مطالعات متعدد از طریق تغییراتی که در باریکه‌گما و شیشه‌کارساز بی‌پروآی کامپیوتر و نور فوتونی، هم‌وسوآی الکترون‌های ماده و تغییر باریکه‌گما نوری در یک ماده از دید پدیده‌های جاده و یا پراکندگی با سختهای ان‌نام‌زمانی صورت می‌گیرد. این تغییر به صورت تابع نمایی با رابطه 1 شناخته می‌شود.

همدانه و آماره‌برای کد مونتاژ کارلو

شکل.
نتایج شیمی‌ماتیک در شکل ۲ در مورد میزان اکسید قربان در تصفیه
شر پروتوهای نوترن بارای اختلافات مختلف پری بارای
حفاظاتی با ۵۰ درصد نگه‌داری می‌دهد با افزایش
درصد بروم میزان تصفیه نوترن‌ها افزایش یافته‌های افزایشی
متفاوتی است. میزان تصفیه شار نوترن‌ها با افزایش بور تا
حدود ۱۰ درصد بسیار زیاد و از ۱۰ درصد به بالا این میزان
تصفیه بسیار کند است.

شکل (۱): نداشتن هندسی مورد استفاده در شبیه‌سازی.

روش شبیه‌سازی به این صورت است که ابتدا حفاظاتی با
ضخامت‌های مشخص مابین چشمه و اشکارساز مطابق با
شکل ۱ قرار گرفته، سپس در هر مرحله از شبیه‌سازی یکی از
حفاظات بهداشتی به دست و در نهایت بدون حضور حفاظات
محایکه شد. مدت زمان شبیه‌سازی طویل تظیم شد که
خطای محاسبات قابل باشند. (کشته از این درصد). نتایج
حاصل از این محاسبات برای ضرایب تصفیه حفاظات معمولی
بودن بور و نگه‌داشتن حفاظاتی با ۳۰ درصد نگه‌داشتن و
۷/۵ درصد، ۵ درصد و ۰ درصد، بور چشمه‌گامایی
پرتوهای ثانویه می‌شود. مطابق با پنج بیل نتایج
هر سه نوع حفاظات به سه نوع نمونه اورده شد. تا میزان تصفیه
پرتوهای ثانویه می‌شود. محاسبات با پنج بیل نتایج
کیفی بالا محاسبه‌پذیر است. نتایج حاصل از این محاسبات در
شکل ۳ امده است.
همانطور که در این شکل ملاحظه می‌شود در ضخامت‌های کم‌تر از انرژی میزان بیشتر نسبت به نیروهای گاما در میزان افزایش آزاد می‌شود. همچنین افرازیش ضخامت انرژی میزان افزایش گوشه می‌یابد. نتیجه کلی حاصل از این شیب‌سازی نشان می‌دهد افرازیش بیشتر به‌عنوان یکی از تضعیفات بیشتر شار نیروهای گاما چشمگیرتر از تعیین‌گذاری قابل‌توجه است. بنا برای افزایش نداشته و در مصرف بتا بدون تضعیف شار گاما قابل‌توجه است. میزان تضعیف بر اساس بازیابی تفاوت‌های گاما قابل‌توجه است.

شکل (4): میزان تضعیف برخورد گاما و تغییر

احراز طراحی بررسی پوششی گاما.

3. مطالعات تجريبي

در بحث حفاظت‌گذاری همواره باید به این نکته توجه نمود میزان کارآیی یک ماده برای حفاظت‌گذاری از طرح میزان تضعیف برخورد باید به‌عنوان یک شرکتی توانایی افراد و به‌عنوان یک شرکتی توانایی اف
چگالی حفاظت‌های پلیمری با استفاده از پلی‌تیلن تنور و سخت از ویژگی‌های جدید این پژوهش است که برای اولین بار در داخل گرانونل‌ها استفاده می‌شود. ابتدا مواد خام شامل لاستیکی، گردی‌های مختلف پلی‌تیلن، ذرات کاری ید بور به‌صورت پودر فلز تهیه شده و مواد خام در دستگاه اکسترودر در دما 160-180 درجه سانتی‌گراد و دور 330 rpm ترکیب شد. به‌عنوان حرارت و اصطکاک، مواد به حالت خمیری مطابق با شکل 14 در آمد. پس از دستگاه‌کردن مواد اختلاف شدیدی به مدت دستگاه‌کردن روش قبلی گزارش شد. نمونه‌های از این حفاظت‌ها در شکل 6 نشان داده شده‌است.

جدول 1: چگالی متوسط پلاستیک حفاظت‌های کامپوزیت‌ی

<table>
<thead>
<tr>
<th>شماره کامپوزیت</th>
<th>درصد تنگستن درصد بور</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1/5</td>
<td>2</td>
</tr>
<tr>
<td>1/6</td>
<td>3</td>
</tr>
<tr>
<td>1/8</td>
<td>4</td>
</tr>
</tbody>
</table>

شکل (4): نمایی از مواد پس از اختلاط که به‌صورت مذاب در حال خروج از دستگاه اکسترودر

شکل (5): نمایی از گرانول به‌دست آمده از دستگاه خردکننده پلیمر.

نتایج میکروسکوب الکترونی

به منظور ارزیابی ساز و کار تغییر شکل و در نهایت شکست در نمونه‌های کامپوزیت از میکروسکوب الکترونی روتوشی (Seron Technology) استفاده شد.

پس از اتمام فرآیند مخلوط‌شدن و خرد شدن گرانول به‌دست آمده در کوره‌ای در دما 70 درجه سانتی‌گراد قرار داده شد. نمونه‌های دقت گرانول خشک شد و گرانول خشک نشوند از پس در سطح حفاظت حباب دیده می‌شود. این عامل سبب ناهماهنگی و

1 Pellestiser
آزمایش حفاظت برای پروتوهای نوترن

برای انجام آزمون حفاظت و اندازه‌گیری میزان تضعیف نوترن در حفاظه‌های کامپوزیت از چشم‌های نوترنی 0.3 کوری استفاده شد.

Am-Be

چشم‌های مورد استفاده در فاصله تقريبي 15 سانتي‌متری از آشکارساز نوترن‌های حارمی و بلوكهای از جنس پیتیلن خالص با ضخامت 7.5 سانتی‌متر به عنوان کانکتنه در جلوی جسمه امرسوم پرلیوم قرار گرفت. در انجام آزمایش حفاظه‌ای ساخته شده مابین چشم‌های آشکارساز قرار داده و شمارش انجام شد. نتایج آزمایش در شکل 9 آمده است.

![Am-Be Diagram](image)

شکل (9): چندان آزمایشگاهی جهت اندازه‌گیری تضعیف نوترنی حفاظه‌ای ساخته شده.

همچنین برای مشاهده کردن میزان پخش ذرات در کامپوزیت ساخته شده با میکروسکوب نوری (LABOMED) و پزشک نمایی 1000X از تعمیر مقایسه شد. شکل 8 تجاوز میکروسکوب نوری میزان توزیع یکنواختی از کربن (B4C) را نشان می‌دهد.

![Microscope Image](image)

شکل (8): عکس گرفته شده با استفاده از میکروسکوب نوری تصویر SEM.
21. هفتم: شماره ۲
طرح و ساخت حفاظ پرتوی کامپوزیت‌های پلیمری اتصال بندی برای میزان های آمیخته نیتروس-گاما

tabl تابی نتنگشه ۳٪ در جدول ۱ آورده شده است. در این جدول مقدار HVL (ضخامت لاپیچچیده ماده جذب که به ازای آن ضخامت شدید پرتوهای تابی به نمیزی از مقدار اولیه کاهش می‌یابد) و مقدار TVL (ان ضخامتی از ماده است که شدت پرتوهای تابی به کمکه مقدار اولیه کاهش می‌یابد) ارایه شده است. همانطور که نتایج این جدول نشان می‌دهد، با افزایش ذرات بور، نسبت شار نیتروس-های خروجی به نیتروس-های ورودی (I/Io) کاهش یافته است. با این توجه داشت این رفتار کاهش خیلی نیست. به طوری که با افزایش ۷/۵ درصد بور در کامپوزیت ضخامت لاپیچچیده ماده نیم‌جدب به اندازه ۳۰ درصد کاهش می‌یابد.

جدول (۲): نتایج آزمون میزان ضعیف نیتروس-ها در حفاظات ساخته شده با درصد ذرات بور و مقدار ثابت ۳٪

<table>
<thead>
<tr>
<th>شماره حریف حفاظات</th>
<th>I/Io (٪)</th>
<th>HVL (cm)</th>
<th>TVL (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱</td>
<td>۲۶</td>
<td>۰/۳۷</td>
<td>۰/۳۸</td>
</tr>
<tr>
<td>۷</td>
<td>۱۸</td>
<td>۰/۴۷</td>
<td>۰/۴۹</td>
</tr>
<tr>
<td>۵</td>
<td>۱۲</td>
<td>۰/۱۳</td>
<td>۰/۱۴</td>
</tr>
</tbody>
</table>

با عنوان نمونه، نتایج تجربی با نتایج شبیه‌سازی در شکل ۱۰ برای حفاظات کامپوزیتی حاوی ۳٪ کاربید بور و ۳٪ نتنگشه مقایسه شده است. در این شکل همکاری‌های قابل قبولی مابین نتایج تجربی و شبیه‌سازی مشاهده می‌شود. در این شکل برای نتایج تجربی و شبیه‌سازی می‌توان دو ناحیه برای تغییرات ابعاد نیتروس‌ها در نظر گرفت. در ناحیه اول میزان تغییرات، ابعاد نیتروس‌ها نیز تغییر نمی‌کنند. در ناحیه دوم از ضخامت ۴ میلی‌متر، میزان تغییرات ابعاد نیتروس‌ها کن است. در ضخامت ۴ میلی‌متر ابعاد نیتروس‌ها تقریباً ۱۰ درصد است.

شکل (۱۱): چندان آزمون میزان ضعیف پرتوهای گاما ۱۳۷Cs
نتایج آزمون تضعیف پرتو گاما

در شکل 12 تغییرات شمارش گاما حاصل از جوش‌های K{	extsuperscript{137}}Cs
بر حسب ضخامت لایه‌هاي حفاظ کامپوزیت‌ها حاواي 7/1\% کاربید بور و 3/0\% نتیج‌برای تجربی و شبیه‌سازی نشان داده شده است.

نتایج تجربی و شبیه‌سازی در این شکل هم‌خوانی خوبی با یکدیگر دارند و حداکثر خطا نسبی میزان عبور برای نتایج تجربی و شبیه‌سازی کمتر از 4 درصد است.

نتایج شکل 12 نشان می‌دهد با افزایش ضخامت‌های حفاظ

مقدار شار عبوری پروتوی گاما کاهش چشمگیری دارد. میزان عبور فتوتون‌های گاما جزء K{	extsuperscript{137}}Cs در ضخامت‌های اندیس 2 سانتی متر بیشتر 40\% درصد است. این مقدار در مقایسه با حفاظ انعطاف‌پذیر ساخته شده نوسان گنگ و همکاران [14] به‌هوسی خوبی در جذب فتوتون‌های گاما را نشان می‌دهد.

میزان شمارش‌ها طوری تنظیم شد که حداکثر خطا برای مقدار تجربی و شبیه‌سازی کمتر از یک درصد بود.

نتایج تست‌های مکانیکی حفاظ‌ها به‌طور خلاصه در جدول 3 آورده شده است.

جدول 3) : درجه‌بندی مکانیکی حفاظ ساخته شده

<table>
<thead>
<tr>
<th>نوع تست مکانیکی</th>
<th>حداکثر مقدار</th>
<th>حداقل مقدار</th>
</tr>
</thead>
<tbody>
<tr>
<td>استحکام کششی (MPa)</td>
<td>1/87</td>
<td>1/30</td>
</tr>
<tr>
<td>قدرت اندازه‌گیری طول (٪)</td>
<td>14/100/53</td>
<td>14/79/55</td>
</tr>
<tr>
<td>قدرت از هم (KN/m)</td>
<td>2/10</td>
<td>1/45</td>
</tr>
<tr>
<td>سختی (shore)</td>
<td>29/64</td>
<td>26/82</td>
</tr>
</tbody>
</table>

1) Tensile strength
2) Elongation
3) Tear strength
4) Hardness
5. نتیجه‌گیری

پویشگری گاما دارد و ذرات کاربید بوی بنا تأثیری در کاهش شار پویشگری گاما ندارند. بررسی‌ها نشان داد که نقش‌بندی ما توانسته گاما نانولای تولید شده ناشی از پرده‌کشانی مواد حفاظت با نانولای یا دیگری جاذب کنک. این امر علاوه بر افزایش ضریب ایمنی در حفاظات گازداری ضخامت، فیلم حفاظت را نا حاضر سبیر زیادی کاهش می‌دهد. نتایج آزمون‌های حفاظات‌های کامپوزیت انعطاف‌پذیر توانمندی و کارایی بالایی برای حفاظات در میدان تابش انرژی نانولای گاما نشان می‌دهد. ضمن اینکه این حفاظات برخلاف حفاظات قبیل انعطاف‌پذیر است. انعطاف‌پذیری حفاظات در کاهش حفاظات‌های میکرو و پنتوی عمیقیت و از انتقادی اثرات انجام پذیرد. این نوع حفاظات می‌توانند در خودروهای ماکملی و زیرین مورد استفاده در سرایی‌های ایمنی کاربرد بسیار مؤثر از خود نشان دهد.

6. مراجع

[17] Iran Polymer and Petrochemical Institute (IPPI), Rubber Processing and Engineering Department.

[18] Sigma-Aldrich Co., Tungsten.

