Volume 6, Issue 4 (9-2018)                   IJRSM 2018, 6(4): 11-18 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

esmaeili S M, ghaderi R. Protective and dosimeter design of the stationary and mobile model truck inspection system with electron linear accelerator radiation source. IJRSM. 2018; 6 (4) :11-18
URL: http://rsm.kashanu.ac.ir/article-1-300-en.html
Shahid Beheshti University
Abstract:   (4294 Views)
In this work, calculations of leaked dose from vehicle inspection area, the absorbed dose by driver and operator, and the required concrete thickness for shielding the inspection area are presented using the Monte Carlo code MCNPX2.6. The X-ray source of the present vehicle inspection system is a LinatronMi6 accelerator, end of which has only been simulated in this study (the electron beam colliding with the anode, anode, filters, and the paralyzers in the path of the generated photons). In this study, first the optimum electron beam current with the energy of 6 MeV in the LinatronMi6 is calculated in such a way that a dose rate of 8 Gy/min in 1 meter away from the accelerator is obtained. Then, the absorbed dose rate by driver is calculated in different vehicle speeds: 0.2m/s, 1m/s, 2m/s, 3m/s and 4m/s. Also, three different materials - air, water and iron for cargo have been considered and for each material, the absorbed dose by driver is calculated separately. Simulation results show that the absorbed dose by the driver for the lower speeds of vehicle and higher atomic numbers and densities of material is higher. Therefore, by assuming 2 m/s as the vehicle speed and iron as the cargo material (worst case scenario), the required lead and steal thickness for shielding the operator room is calculated to be 3mm steal and 10.5 mm lead. At the end of this study, the required thickness of concrete for the inspection area walls is calculated. According to the simulation results, 52 cm concrete in the entrance gate and 40 cm in other parts are sufficient to keep the leaked dose from the wall lower than 5μSv/h.

Full-Text [PDF 1405 kb]   (519 Downloads)    
Type of Study: Research | Subject: Special

Send email to the article author

© 2021 All Rights Reserved | Iranian Journal of Radiation Safety and Measurement

Designed & Developed by : Yektaweb